GODEL Florian
Ingénieur CNRS
2898556
Godel, F.
surface-science-reports
500
date
desc
1293
https://laboratoire-albert-fert.cnrs-thales.fr/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3A%22zotpress-915628cd768bf6b2e7adac0e1dde1f00%22%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22KH8P3HEV%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Husain%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-23%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ES.%20Husain%2C%20N.F.%20Prestes%2C%20O.%20Fayet%2C%20S.%20Collin%2C%20F.%20Godel%2C%20E.%20Jacquet%2C%20T.%20Denneulin%2C%20R.E.%20Dunin-Borkowski%2C%20A.%20Thiaville%2C%20M.%20Bibes%2C%20H.%20Jaffr%26%23xE8%3Bs%2C%20N.%20Reyren%2C%20A.%20Fert%2C%20J.-M.%20George%2C%20Field-Free%20Switching%20of%20Perpendicular%20Magnetization%20in%20an%20Ultrathin%20Epitaxial%20Magnetic%20Insulator%2C%20Nano%20Letters%2024%20%282024%29%202743.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.3c04413%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.3c04413%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Field-Free%20Switching%20of%20Perpendicular%20Magnetization%20in%20an%20Ultrathin%20Epitaxial%20Magnetic%20Insulator%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Husain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.F.%22%2C%22lastName%22%3A%22Prestes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Fayet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Jacquet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Denneulin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.E.%22%2C%22lastName%22%3A%22Dunin-Borkowski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Thiaville%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bibes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Jaffr%5Cu00e8s%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Reyren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Fert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-M.%22%2C%22lastName%22%3A%22George%22%7D%5D%2C%22abstractNote%22%3A%22For%20energy-efficient%20magnetic%20memories%2C%20switching%20of%20perpendicular%20magnetization%20by%20spin%5Cu2013orbit%20torque%20%28SOT%29%20appears%20to%20be%20a%20promising%20solution.%20This%20SOT%20switching%20requires%20the%20assistance%20of%20an%20in-plane%20magnetic%20field%20to%20break%20the%20symmetry.%20Here%2C%20we%20demonstrate%20the%20field-free%20SOT%20switching%20of%20a%20perpendicularly%20magnetized%20thulium%20iron%20garnet%20%28Tm3Fe5O12%2C%20TmIG%29.%20The%20polarity%20of%20the%20switching%20loops%2C%20clockwise%20or%20counterclockwise%2C%20is%20determined%20by%20the%20direction%20of%20the%20initial%20current%20pulses%2C%20in%20contrast%20with%20field-assisted%20switching%20where%20the%20polarity%20is%20controlled%20by%20the%20direction%20of%20the%20magnetic%20field.%20From%20Brillouin%20light%20scattering%2C%20we%20determined%20the%20Dzyaloshinskii%5Cu2013Moriya%20interaction%20%28DMI%29%20induced%20by%20the%20Pt%5Cu2013TmIG%20interface.%20We%20will%20discuss%20the%20possible%20origins%20of%20field-free%20switching%20and%20the%20roles%20of%20the%20interfacial%20DMI%20and%20cubic%20magnetic%20anisotropy%20of%20TmIG.%20This%20discussion%20is%20substantiated%20by%20magnetotransport%2C%20Kerr%20microscopy%2C%20and%20micromagnetic%20simulations.%20Our%20observation%20of%20field-free%20electrical%20switching%20of%20a%20magnetic%20insulator%20is%20an%20important%20milestone%20for%20low-power%20spintronic%20devices.%22%2C%22date%22%3A%22February%2023%2C%202024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.nanolett.3c04413%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222024-03-07T15%3A44%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22PB9TVQJ3%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22da%20C%5Cu00e2mara%20Santa%20Clara%20Gomes%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ET.%20da%20C%26%23xE2%3Bmara%20Santa%20Clara%20Gomes%2C%20T.%20Bhatnagar-Sch%26%23xF6%3Bffmann%2C%20S.%20Krishnia%2C%20Y.%20Sassi%2C%20D.%20Sanz-Hern%26%23xE1%3Bndez%2C%20N.%20Reyren%2C%20M.-B.%20Martin%2C%20F.%20Brunnett%2C%20S.%20Collin%2C%20F.%20Godel%2C%20S.%20Ono%2C%20D.%20Querlioz%2C%20D.%20Ravelosona%2C%20V.%20Cros%2C%20J.%20Grollier%2C%20P.%20Seneor%2C%20L.%20Herrera%20Diez%2C%20Control%20of%20the%20magnetic%20anisotropy%20in%20multirepeat%20Pt%5C%2FCo%5C%2FAl%20heterostructures%20using%20magnetoionic%20gating%2C%20Phys.%20Rev.%20Appl.%2021%20%282024%29%20024010.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.21.024010%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.21.024010%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Control%20of%20the%20magnetic%20anisotropy%20in%20multirepeat%20Pt%5C%2FCo%5C%2FAl%20heterostructures%20using%20magnetoionic%20gating%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tristan%22%2C%22lastName%22%3A%22da%20C%5Cu00e2mara%20Santa%20Clara%20Gomes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Bhatnagar-Sch%5Cu00f6ffmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Krishnia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Sassi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Sanz-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Reyren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Brunnett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Ono%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Querlioz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Ravelosona%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Cros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Grollier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Herrera%20Diez%22%7D%5D%2C%22abstractNote%22%3A%22Controlling%20magnetic%20properties%20through%20the%20application%20of%20an%20electric%20field%20is%20a%20significant%20challenge%20in%20modern%20nanomagnetism.%20In%20this%20study%2C%20we%20investigate%20the%20magnetoionic%20control%20of%20magnetic%20anisotropy%20in%20the%20topmost%20Co%20layer%20in%20%24%5C%5Cmathrm%7BTa%7D%24%5C%2F%24%5C%5Cmathrm%7BPt%7D%24%5C%2F%5B%24%5C%5Cmathrm%7BCo%7D%24%5C%2F%24%5C%5Cmathrm%7BAl%7D%24%5C%2F%24%5C%5Cmathrm%7BPt%7D%24%5D%24%7B%7D_%7Bn%7D%24%5C%2F%24%5C%5Cmathrm%7BCo%7D%24%5C%2F%24%5C%5Cmathrm%7BAl%7D%24%5C%2F%24%5C%5Cmathrm%7BAl%7D%5C%5Cmathrm%7BO%7D%24%24%7B%7D_%7Bx%7D%24%20multilayer%20stacks%20comprising%20%24n%2B1%24%20Co%20layers%20and%20its%20impact%20on%20the%20magnetic%20properties%20of%20the%20multilayers.%20We%20demonstrate%20that%20the%20perpendicular%20magnetic%20anisotropy%20can%20be%20reversibly%20quenched%20through%20gate-driven%20oxidation%20of%20the%20intermediary%20%24%5C%5Cmathrm%7BAl%7D%24%20layer%20between%20%24%5C%5Cmathrm%7BCo%7D%24%20and%20%24%7B%5C%5Cmathrm%7BAl%7D%5C%5Cmathrm%7BO%7D%7D_%7Bx%7D%24%2C%20enabling%20dynamic%20control%20of%20the%20magnetic%20layers%20contributing%20to%20the%20out-of-plane%20remanence---varying%20between%20%24n%24%20and%20%24n%2B1%24.%20For%20multilayer%20configurations%20with%20%24n%3D2%24%20and%20%24n%3D4%24%2C%20we%20observe%20reversible%20and%20nonvolatile%20additions%20of%201%5C%2F3%20and%201%5C%2F5%2C%20respectively%2C%20to%20the%20anomalous%20Hall-effect%20amplitude%20based%20on%20the%20applied%20gate%20voltage.%20Magnetic%20imaging%20reveals%20that%20the%20gate-induced%20spin-reorientation%20transition%20occurs%20through%20the%20propagation%20of%20a%20single%20%24%7B90%7D%5E%7B%5C%5Censuremath%7B%5C%5Ccirc%7D%7D%24%20magnetic%20domain%20wall%20separating%20the%20perpendicular%20and%20in-plane%20anisotropy%20states.%20In%20the%20five-repetition%20multilayer%2C%20the%20modification%20leads%20to%20a%20doubling%20of%20the%20period%20of%20the%20magnetic%20domains%20at%20remanence.%20These%20results%20demonstrate%20that%20the%20magnetoionic%20control%20of%20the%20anisotropy%20of%20a%20single%20magnetic%20layer%20can%20be%20used%20to%20control%20the%20magnetic%20properties%20of%20coupled%20multilayer%20systems%2C%20extending%20beyond%20the%20gating%20effects%20on%20a%20single%20magnetic%20layer.%22%2C%22date%22%3A%222024%5C%2F02%5C%2F06%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.21.024010%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222024-02-07T11%3A51%3A00Z%22%7D%7D%2C%7B%22key%22%3A%22IJHQ62SM%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dufour%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EP.%20Dufour%2C%20A.%20Abdelsamie%2C%20J.%20Fischer%2C%20A.%20Finco%2C%20A.%20Haykal%2C%20M.F.%20Sarott%2C%20S.%20Varotto%2C%20C.%20Carr%26%23xE9%3Bt%26%23xE9%3Bro%2C%20S.%20Collin%2C%20F.%20Godel%2C%20N.%20Jaouen%2C%20M.%20Viret%2C%20M.%20Trassin%2C%20K.%20Bouzehouane%2C%20V.%20Jacques%2C%20J.-Y.%20Chauleau%2C%20S.%20Fusil%2C%20V.%20Garcia%2C%20Onset%20of%20Multiferroicity%20in%20Prototypical%20Single-Spin%20Cycloid%20BiFeO3%20Thin%20Films%2C%20Nano%20Letters%2023%20%282023%29%209073.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.3c02875%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.3c02875%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Onset%20of%20Multiferroicity%20in%20Prototypical%20Single-Spin%20Cycloid%20BiFeO3%20Thin%20Films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Dufour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Abdelsamie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Fischer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Finco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Haykal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.F.%22%2C%22lastName%22%3A%22Sarott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Varotto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Carr%5Cu00e9t%5Cu00e9ro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Jaouen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Viret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Trassin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bouzehouane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Jacques%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-Y.%22%2C%22lastName%22%3A%22Chauleau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Fusil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Garcia%22%7D%5D%2C%22abstractNote%22%3A%22In%20the%20room-temperature%20magnetoelectric%20multiferroic%20BiFeO3%2C%20the%20noncollinear%20antiferromagnetic%20state%20is%20coupled%20to%20the%20ferroelectric%20order%2C%20opening%20applications%20for%20low-power%20electric-field-controlled%20magnetic%20devices.%20While%20several%20strategies%20have%20been%20explored%20to%20simplify%20the%20ferroelectric%20landscape%2C%20here%20we%20directly%20stabilize%20a%20single-domain%20ferroelectric%20and%20spin%20cycloid%20state%20in%20epitaxial%20BiFeO3%20%28111%29%20thin%20films%20grown%20on%20orthorhombic%20DyScO3%20%28011%29.%20Comparing%20them%20with%20films%20grown%20on%20SrTiO3%20%28111%29%2C%20we%20identify%20anisotropic%20in-plane%20strain%20as%20a%20powerful%20handle%20for%20tailoring%20the%20single%20antiferromagnetic%20state.%20In%20this%20single-domain%20multiferroic%20state%2C%20we%20establish%20the%20thickness%20limit%20of%20the%20coexisting%20electric%20and%20magnetic%20orders%20and%20directly%20visualize%20the%20suppression%20of%20the%20spin%20cycloid%20induced%20by%20the%20magnetoelectric%20interaction%20below%20the%20ultrathin%20limit%20of%201.4%20nm.%20This%20as-grown%20single-domain%20multiferroic%20configuration%20in%20BiFeO3%20thin%20films%20opens%20an%20avenue%20both%20for%20fundamental%20investigations%20and%20for%20electrically%20controlled%20noncollinear%20antiferromagnetic%20spintronics.%22%2C%22date%22%3A%22September%2022%2C%202023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.nanolett.3c02875%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A13%3A50Z%22%7D%7D%2C%7B%22key%22%3A%226TNZDPYR%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Grelier%20et%20al.%22%2C%22parsedDate%22%3A%222023-06-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Grelier%2C%20F.%20Godel%2C%20A.%20Vecchiola%2C%20S.%20Collin%2C%20K.%20Bouzehouane%2C%20V.%20Cros%2C%20N.%20Reyren%2C%20R.%20Battistelli%2C%20H.%20Popescu%2C%20C.%20L%26%23xE9%3Bveill%26%23xE9%3B%2C%20N.%20Jaouen%2C%20F.%20B%26%23xFC%3Bttner%2C%20X-ray%20holography%20of%20skyrmionic%20cocoons%20in%20aperiodic%20magnetic%20multilayers%2C%20Phys.%20Rev.%20B%20107%20%282023%29%20L220405.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.107.L220405%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.107.L220405%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22X-ray%20holography%20of%20skyrmionic%20cocoons%20in%20aperiodic%20magnetic%20multilayers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Grelier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bouzehouane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Cros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Reyren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Battistelli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Popescu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22L%5Cu00e9veill%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Jaouen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22B%5Cu00fcttner%22%7D%5D%2C%22abstractNote%22%3A%22The%20development%20and%20characterization%20of%20three-dimensional%20topological%20magnetic%20textures%20has%20become%20an%20important%20topic%20in%20modern%20magnetism%20from%20both%20fundamental%20and%20technological%20perspectives.%20Here%2C%20the%20authors%20stabilize%20skyrmionic%20cocoons%20by%20engineering%20the%20properties%20of%20Pt%5C%2FCo%5C%2FAl%20based%20multilayers%20with%20variable%20Co%20thickness.%20These%20new%20textures%20can%20be%20observed%20in%20transmission%20with%20x-ray%20holography.%20Their%20coexistence%20with%20skyrmion%20tubes%20is%20particularly%20interesting%20as%20they%20can%20open%20new%20paths%20for%20three-dimensional%20spintronics.%22%2C%22date%22%3A%222023%5C%2F06%5C%2F22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.107.L220405%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A14%3A20Z%22%7D%7D%2C%7B%22key%22%3A%2287JVWQXC%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sethi%20et%20al.%22%2C%22parsedDate%22%3A%222023-06-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EP.%20Sethi%2C%20D.%20Sanz-Hern%26%23xE1%3Bndez%2C%20F.%20Godel%2C%20S.%20Krishnia%2C%20F.%20Ajejas%2C%20A.%20Mizrahi%2C%20V.%20Cros%2C%20D.%20Markovi%26%23x107%3B%2C%20J.%20Grollier%2C%20Compensation%20of%20Anisotropy%20in%20Spin%20Hall%20Devices%20for%20Neuromorphic%20Applications%2C%20Phys.%20Rev.%20Appl.%2019%20%282023%29%20064018.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.19.064018%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.19.064018%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Compensation%20of%20Anisotropy%20in%20Spin%20Hall%20Devices%20for%20Neuromorphic%20Applications%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Sethi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Sanz-Hern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Krishnia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Ajejas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Mizrahi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Cros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Markovi%5Cu0107%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Grollier%22%7D%5D%2C%22abstractNote%22%3A%22Spintronic%20nano-oscillators%20and%20diodes%20with%20reduced%20nonlinearity%20benefit%20from%20low%20phase%20noise%20and%20improved%20device%20properties.%20Moreover%2C%20they%20could%20offer%20key%20advantages%20for%20realizing%20neuromorphic%20applications%2C%20such%20as%20spike-based%20neurons%20and%20frequency%20multiplexing%20in%20neural%20networks.%20Here%2C%20we%20experimentally%20demonstrate%20the%20reduction%20in%20nonlinearity%20of%20a%20spin%20Hall%20nano-oscillator%20%28SHNO%29%20by%20compensation%20of%20its%20effective%20magnetic%20anisotropy.%20The%20study%20involves%20optimization%20of%20%24%5C%5Cmathrm%7BCo%7D%5C%2F%5C%5Cmathrm%7BNi%7D%24%20multilayer%20growth%20to%20achieve%20the%20compensation%2C%20followed%20by%20spin-diode%20measurements%20on%20patterned%20microstrips%20to%20quantify%20their%20anisotropy.%20The%20relationship%20between%20the%20second-%20%24%28%7BH%7D_%7B%7Bk%7D_%7B2%7D%7D%3D0.47%5C%5Cphantom%7B%5C%5Crule%7B0.25em%7D%7B0ex%7D%7D%5C%5Cmathrm%7BmT%7D%29%24%20and%20first-order%20%24%28%7BH%7D_%7B%7Bk%7D_%7B1%7D%7D%5E%7B%5C%5Cmathrm%7Beff%7D%7D%3D%5C%5Censuremath%7B-%7D0.8%5C%5Cphantom%7B%5C%5Crule%7B0.25em%7D%7B0ex%7D%7D%5C%5Cmathrm%7BmT%7D%29%24%20anisotropy%20fields%20reveals%20the%20existence%20of%20an%20easy%20cone%2C%20thereby%20validating%20the%20presence%20of%20compensation.%20Furthermore%2C%20we%20demonstrate%20a%20compensated%20spin%20diode%20that%20has%20a%20fixed%20frequency%20when%20the%20input%20power%20is%20varied.%20We%20then%20study%20the%20current-induced%20auto-oscillation%20properties%20of%20SHNOs%20on%20compensated%20films%20by%20patterning%20nanoconstrictions%20of%20200%20and%20100%20nm%20wide.%20The%20invariance%20of%20the%20resonance%20frequency%20and%20linewidth%20of%20the%20compensated%20SHNO%20with%20applied%20dc%20current%20indicates%20the%20absence%20of%20nonlinearity.%20This%20independence%20is%20maintained%20irrespective%20of%20the%20applied%20external%20fields%20and%20their%20orientations.%20The%20compensated%20SHNO%20obtained%20has%20a%20linewidth%20of%201.1%20MHz%20and%20a%20peak%20output%20power%20of%20up%20to%201%20pW%5C%2FMHz.%22%2C%22date%22%3A%222023%5C%2F06%5C%2F06%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.19.064018%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-06T21%3A40%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22NQNY736W%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dufour%20et%20al.%22%2C%22parsedDate%22%3A%222023-06-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EP.%20Dufour%2C%20T.%20Maroutian%2C%20M.%20Vallet%2C%20K.%20Patel%2C%20A.%20Chanthbouala%2C%20C.%20Jacquemont%2C%20L.%20Yedra%2C%20V.%20Humbert%2C%20F.%20Godel%2C%20B.%20Xu%2C%20S.%20Prosandeev%2C%20L.%20Bellaiche%2C%20M.%20Otoni%26%23x10D%3Bar%2C%20S.%20Fusil%2C%20B.%20Dkhil%2C%20V.%20Garcia%2C%20Ferroelectric%20phase%20transitions%20in%20epitaxial%20antiferroelectric%20PbZrO3%20thin%20films%2C%20Applied%20Physics%20Reviews%2010%20%282023%29%20021405.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0143892%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0143892%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ferroelectric%20phase%20transitions%20in%20epitaxial%20antiferroelectric%20PbZrO3%20thin%20films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Dufour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Maroutian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Vallet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Patel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Chanthbouala%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Jacquemont%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Yedra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Humbert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Prosandeev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Bellaiche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Otoni%5Cu010dar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Fusil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dkhil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Garcia%22%7D%5D%2C%22abstractNote%22%3A%22The%20archetypical%20antiferroelectric%2C%20PbZrO3%2C%20is%20currently%20attracting%20a%20lot%20of%20interest%2C%20but%20no%20consensus%20can%20be%20clearly%20established%20on%20the%20nature%20of%20its%20ground%20s%22%2C%22date%22%3A%222023%5C%2F06%5C%2F01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0143892%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A13%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22J6U974WC%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Husain%20et%20al.%22%2C%22parsedDate%22%3A%222023-02-08%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ES.%20Husain%2C%20N.%20Figueiredo-Prestes%2C%20O.%20Fayet%2C%20S.%20Collin%2C%20F.%20Godel%2C%20E.%20Jacquet%2C%20N.%20Reyren%2C%20H.%20Jaffr%26%23xE8%3Bs%2C%20J.M.%20George%2C%20Origin%20of%20the%20anomalous%20Hall%20effect%20at%20the%20magnetic%20insulator%5C%2Fheavy%20metals%20interface%2C%20Applied%20Physics%20Letters%20122%20%282023%29%20062403.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0132895%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0132895%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Origin%20of%20the%20anomalous%20Hall%20effect%20at%20the%20magnetic%20insulator%5C%2Fheavy%20metals%20interface%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Husain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Figueiredo-Prestes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Fayet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Jacquet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Reyren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Jaffr%5Cu00e8s%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22George%22%7D%5D%2C%22abstractNote%22%3A%22Ferrimagnetic%20insulators%20%28FIMIs%29%20are%20considered%20to%20be%20promising%20candidates%20in%20spin%5Cu2013orbit%20torque%20%28SOT%29%20devices%20due%20to%20their%20ability%20to%20propagate%20a%20spin%20current%20by%20magnons%20without%20Ohmic%20losses%20owing%20to%20the%20absence%20of%20electronic%20scattering.%20Moreover%2C%20any%20electrical%20current%20shunt%20is%20avoided%20in%20magnetic%20insulating%20materials.%20On%20the%20other%20hand%2C%20SOT-induced%20magnetization%20switching%20is%20generally%20measured%20through%20the%20anomalous%20Hall%20effect%20%28AHE%29%20in%20FIMI%5C%2Fheavy%20metal%20%28HM%29%20systems.%20However%2C%20the%20origin%20of%20AHE%20in%20FIMI%5C%2FHM%20remains%20elusive%20since%20charges%20flow%20only%20in%20the%20HM.%20Here%2C%20we%20experimentally%20demonstrate%20that%20the%20AHE%20has%20the%20same%20origin%20as%20the%20spin%20Hall%20magnetoresistance%20%28SMR%29.%20To%20this%20end%2C%20we%20have%20studied%20two%20bilayer%20heterostructures%2C%20Tm3Fe5O12%28TmIG%29%5C%2FW%20and%20TmIG%5C%2FPt%2C%20where%20we%20ensure%20opposite%20spin%20Hall%20effect%20%28SHE%29%20signs%20for%20two%20heavy%20metals%20%28W%20and%20Pt%29.%20The%20magnitudes%20of%20AHE%20and%20SMR%20are%20found%20to%20be%20larger%20for%20TmIG%5C%2FW%20than%20TmIG%5C%2FPt.%20We%20have%20also%20evidenced%20the%20identical%20polarity%20of%20AHE%20hysteresis%20in%20both%20systems%20revealing%20a%20square%20dependency%20on%20the%20spin%20Hall%20angle%20whereas%20the%20current-induced%20magnetization%20switching%20polarity%20in%20TmIG%5C%2FW%20is%20opposite%20to%20that%20of%20TmIG%5C%2FPt%20as%20expected%20for%20opposite%20spin%20Hall%20angle%20signs.%20Our%20results%20establish%20that%20the%20AHE%20and%20the%20spin-Hall%20magnetoresistance%20in%20TmIG%20insulating%20ferromagnets%20and%20heavy%20metal%20bilayers%20originate%20from%20the%20same%20mechanism.%22%2C%22date%22%3A%222023-02-08%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0132895%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A14%3A58Z%22%7D%7D%2C%7B%22key%22%3A%22VHAMPX4R%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zatko%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Zatko%2C%20R.%20Galceran%2C%20M.%20Galbiati%2C%20J.%20Peiro%2C%20F.%20Godel%2C%20L.-M.%20Kern%2C%20D.%20Perconte%2C%20F.%20Ibrahim%2C%20A.%20Hallal%2C%20M.%20Chshiev%2C%20B.%20Martinez%2C%20C.%20Frontera%2C%20L.%20Balcells%2C%20P.R.%20Kidambi%2C%20J.%20Robertson%2C%20S.%20Hofmann%2C%20S.%20Collin%2C%20F.%20Petroff%2C%20M.-B.%20Martin%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20Artificial%20Graphene%20Spin%20Polarized%20Electrode%20for%20Magnetic%20Tunnel%20Junctions%2C%20Nano%20Letters%2023%20%282023%29%2034.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.2c03113%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.2c03113%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Artificial%20Graphene%20Spin%20Polarized%20Electrode%20for%20Magnetic%20Tunnel%20Junctions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Galceran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Peiro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.-M.%22%2C%22lastName%22%3A%22Kern%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Perconte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Ibrahim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Hallal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Chshiev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Martinez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Frontera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Balcells%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.R.%22%2C%22lastName%22%3A%22Kidambi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Robertson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Hofmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Petroff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%222D%20materials%20offer%20the%20ability%20to%20expose%20their%20electronic%20structure%20to%20manipulations%20by%20a%20proximity%20effect.%20This%20could%20be%20harnessed%20to%20craft%20properties%20of%202D%20interfaces%20and%20van%20der%20Waals%20heterostructures%20in%20devices%20and%20quantum%20materials.%20We%20explore%20the%20possibility%20to%20create%20an%20artificial%20spin%20polarized%20electrode%20from%20graphene%20through%20proximity%20interaction%20with%20a%20ferromagnetic%20insulator%20to%20be%20used%20in%20a%20magnetic%20tunnel%20junction%20%28MTJ%29.%20Ferromagnetic%20insulator%5C%2Fgraphene%20artificial%20electrodes%20were%20fabricated%20and%20integrated%20in%20MTJs%20based%20on%20spin%20analyzers.%20Evidence%20of%20the%20emergence%20of%20spin%20polarization%20in%20proximitized%20graphene%20layers%20was%20observed%20through%20the%20occurrence%20of%20tunnel%20magnetoresistance.%20We%20deduced%20a%20spin%20dependent%20splitting%20of%20graphene%5Cu2019s%20Dirac%20band%20structure%20%28%5Cu223c15%20meV%29%20induced%20by%20the%20proximity%20effect%2C%20potentially%20leading%20to%20full%20spin%20polarization%20and%20opening%20the%20way%20to%20gating.%20The%20extracted%20spin%20signals%20illustrate%20the%20potential%20of%202D%20quantum%20materials%20based%20on%20proximity%20effects%20to%20craft%20spintronics%20functionalities%2C%20from%20vertical%20MTJs%20memory%20cells%20to%20logic%20circuits.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.nanolett.2c03113%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A16%3A54Z%22%7D%7D%2C%7B%22key%22%3A%225GGNP5TC%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Grelier%20et%20al.%22%2C%22parsedDate%22%3A%222022-11-11%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Grelier%2C%20F.%20Godel%2C%20A.%20Vecchiola%2C%20S.%20Collin%2C%20K.%20Bouzehouane%2C%20A.%20Fert%2C%20V.%20Cros%2C%20N.%20Reyren%2C%20Three-dimensional%20skyrmionic%20cocoons%20in%20magnetic%20multilayers%2C%20Nat%20Commun%2013%20%282022%29%206843.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-022-34370-x%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-022-34370-x%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Three-dimensional%20skyrmionic%20cocoons%20in%20magnetic%20multilayers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Grelier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bouzehouane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Fert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Cros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Reyren%22%7D%5D%2C%22abstractNote%22%3A%22Three%20dimensional%20topological%20spin%20textures%2C%20such%20as%20hopfions%20and%20skyrmion%20tubes%2C%20have%20seen%20a%20surge%20of%20interest%20for%20their%20potential%20technological%20applications.%20They%20offer%20greater%20flexibility%20than%20their%20two%20dimensional%20counterparts%2C%20but%20have%20been%20hampered%20by%20the%20limited%20material%20platforms.%20Here%2C%20Grelier%20et%20al.%20look%20at%20aperiodic%20multilayers%2C%20and%20observe%20a%20three%20dimensional%20skyrmionic%20cocoon.%22%2C%22date%22%3A%222022-11-11%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-022-34370-x%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A07%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22NWTGMQK8%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zatko%20et%20al.%22%2C%22parsedDate%22%3A%222022-09-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Zatko%2C%20S.M.-M.%20Dubois%2C%20F.%20Godel%2C%20M.%20Galbiati%2C%20J.%20Peiro%2C%20A.%20Sander%2C%20C.%20Carretero%2C%20A.%20Vecchiola%2C%20S.%20Collin%2C%20K.%20Bouzehouane%2C%20B.%20Servet%2C%20F.%20Petroff%2C%20J.-C.%20Charlier%2C%20M.-B.%20Martin%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20Almost%20Perfect%20Spin%20Filtering%20in%20Graphene-Based%20Magnetic%20Tunnel%20Junctions%2C%20ACS%20Nano%2016%20%282022%29%2014007.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.2c03625%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.2c03625%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Almost%20Perfect%20Spin%20Filtering%20in%20Graphene-Based%20Magnetic%20Tunnel%20Junctions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.M.-M.%22%2C%22lastName%22%3A%22Dubois%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Peiro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Sander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Carretero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bouzehouane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Servet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Petroff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-C.%22%2C%22lastName%22%3A%22Charlier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20on%20large%20spin-filtering%20effects%20in%20epitaxial%20graphene-based%20spin%20valves%2C%20strongly%20enhanced%20in%20our%20specific%20multilayer%20case.%20Our%20results%20were%20obtained%20by%20the%20effective%20association%20of%20chemical%20vapor%20deposited%20%28CVD%29%20multilayer%20graphene%20with%20a%20high%20quality%20epitaxial%20Ni%28111%29%20ferromagnetic%20spin%20source.%20We%20highlight%20that%20the%20Ni%28111%29%20spin%20source%20electrode%20crystallinity%20and%20metallic%20state%20are%20preserved%20and%20stabilized%20by%20multilayer%20graphene%20CVD%20growth.%20Complete%20nanometric%20spin%20valve%20junctions%20are%20fabricated%20using%20a%20local%20probe%20indentation%20process%2C%20and%20spin%20properties%20are%20extracted%20from%20the%20graphene-protected%20ferromagnetic%20electrode%20through%20the%20use%20of%20a%20reference%20Al2O3%5C%2FCo%20spin%20analyzer.%20Strikingly%2C%20spin-transport%20measurements%20in%20these%20structures%20give%20rise%20to%20large%20negative%20tunnel%20magneto-resistance%20TMR%20%3D%20%5Cu2212160%25%2C%20pointing%20to%20a%20particularly%20large%20spin%20polarization%20for%20the%20Ni%28111%29%5C%2FGr%20interface%20PNi%5C%2FGr%2C%20evaluated%20up%20to%20%5Cu221298%25.%20We%20then%20discuss%20an%20emerging%20physical%20picture%20of%20graphene%5Cu2013ferromagnet%20systems%2C%20sustained%20both%20by%20experimental%20data%20and%20ab%20initio%20calculations%2C%20intimately%20combining%20efficient%20spin%20filtering%20effects%20arising%20%28i%29%20from%20the%20bulk%20band%20structure%20of%20the%20graphene%20layers%20purifying%20the%20extracted%20spin%20direction%2C%20%28ii%29%20from%20the%20hybridization%20effects%20modulating%20the%20amplitude%20of%20spin%20polarized%20scattering%20states%20over%20the%20first%20few%20graphene%20layers%20at%20the%20interface%2C%20and%20%28iii%29%20from%20the%20epitaxial%20interfacial%20matching%20of%20the%20graphene%20layers%20with%20the%20spin-polarized%20Ni%20surface%20selecting%20well-defined%20spin%20polarized%20channels.%20Importantly%2C%20these%20main%20spin%20selection%20effects%20are%20shown%20to%20be%20either%20cooperating%20or%20competing%2C%20explaining%20why%20our%20transport%20results%20were%20not%20observed%20before.%20Overall%2C%20this%20study%20unveils%20a%20path%20to%20harness%20the%20full%20potential%20of%20low%20Resitance.Area%20%28RA%29%20graphene%20interfaces%20in%20efficient%20spin-based%20devices.%22%2C%22date%22%3A%22September%206%2C%202022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsnano.2c03625%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A12%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22UYPPLYE3%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Quinard%20et%20al.%22%2C%22parsedDate%22%3A%222022-05-24%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EB.%20Quinard%2C%20F.%20Godel%2C%20M.%20Galbiati%2C%20V.%20Zatko%2C%20A.%20Sander%2C%20A.%20Vecchiola%2C%20S.%20Collin%2C%20K.%20Bouzehouane%2C%20F.%20Petroff%2C%20R.%20Mattana%2C%20M.-B.%20Martin%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20A%20ferromagnetic%20spin%20source%20grown%20by%20atomic%20layer%20deposition%2C%20Applied%20Physics%20Letters%20120%20%282022%29%20213503.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0087869%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0087869%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20ferromagnetic%20spin%20source%20grown%20by%20atomic%20layer%20deposition%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Quinard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Sander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bouzehouane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Petroff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Mattana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20on%20the%20growth%20of%20a%20ferromagnetic%20cobalt%20electrode%20by%20atomic%20layer%20deposition%20%28ALD%29%20and%20demonstrate%20it%20as%20a%20functional%20spin%20source%20in%20complete%20magnetic%20tunnel%20junctions%20%28MTJs%29.%20Using%20an%20in%20situ%20protocol%2C%20we%20integrate%20a%20reference%20tunnel%20barrier%20on%20top%20of%20the%20ALD%20cobalt%20spin%20source%20stabilizing%20its%20metallic%20nature%20and%20allowing%20further%20characterization.%20The%20cobalt%20layer%2C%20grown%20in%20mbar%20conditions%20with%20chemical%20precursors%2C%20is%20assessed%20to%20be%20metallic%20and%20ferromagnetic%20using%20both%20x-ray%20photoelectron%20spectroscopy%20and%20superconducting%20quantum%20interference%20device%20magnetometry%20measurements.%20Atomic%20force%20microscopy%20tapping%20and%20conductive%20tip%20mode%20analyses%20reveal%20a%20very%20flat%20film%20with%20low%20roughness%20%280.2%20nm%20RMS%29%20with%20a%20high%20homogeneity%20of%20surface%20conductivity%20matching%20the%20best%20reference%20samples%20grown%20by%20sputtering.%20We%20finally%20evaluate%20its%20behavior%20in%20full%20MTJ%20spin%20valves%2C%20using%20a%20reference%20spin%20analyzer%20to%20highlight%20that%20the%20ALD%20grown%20layer%20is%2C%20indeed%2C%20spin%20polarized%20and%20can%20act%20as%20a%20functional%20spintronics%20electrode.%20This%20result%20opens%20the%20perspective%20of%20exploiting%20the%20benefits%20of%20ALD%20%28such%20as%20the%20wide%20area%20low-cost%20process%2C%20extreme%20conformality%2C%20layer%20by%20layer%20growth%20of%20heterostructures%2C%20area%20selectivity%2C%20etc.%29%20for%20spintronics%20applications.%22%2C%22date%22%3A%222022-05-24%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0087869%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A10%3A04Z%22%7D%7D%2C%7B%22key%22%3A%224XZAN4A7%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhong%20et%20al.%22%2C%22parsedDate%22%3A%222022-04-26%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EH.%20Zhong%2C%20A.%20Finco%2C%20J.%20Fischer%2C%20A.%20Haykal%2C%20K.%20Bouzehouane%2C%20C.%20Carr%26%23xE9%3Bt%26%23xE9%3Bro%2C%20F.%20Godel%2C%20P.%20Maletinsky%2C%20M.%20Munsch%2C%20S.%20Fusil%2C%20V.%20Jacques%2C%20V.%20Garcia%2C%20Quantitative%20Imaging%20of%20Exotic%20Antiferromagnetic%20Spin%20Cycloids%20in%20BiFeO3%20Thin%20Films%2C%20Phys.%20Rev.%20Applied%2017%20%282022%29%20044051.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.17.044051%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.17.044051%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Quantitative%20Imaging%20of%20Exotic%20Antiferromagnetic%20Spin%20Cycloids%20in%20BiFeO3%20Thin%20Films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Zhong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Finco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Fischer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Haykal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bouzehouane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Carr%5Cu00e9t%5Cu00e9ro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Maletinsky%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Munsch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Fusil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Jacques%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Garcia%22%7D%5D%2C%22abstractNote%22%3A%22Understanding%20how%20antiferromagnetic%20spin%20textures%20evolve%20with%20epitaxial%20strain%20and%20ferroelectric%20domains%20in%20multiferroic%20BiFeO%24%7B%7D_%7B3%7D%24%20thin%20films%20is%20key%20for%20their%20efficient%20use%20as%20reconfigurable%20antiferromagnetic%20spintronic%20devices.%20This%20study%20combines%20local-probe%20techniques%20to%20reveal%20exotic%20antiferromagnetic%20cycloids%20with%20diverging%20periods%20in%20films%20under%20large%20tensile%20strain.%20Coupling%20quantitative%20measurements%20and%20analytical%20calculations%20of%20the%20expected%20stray%20magnetic%20field%2C%20the%20authors%20estimate%20the%20spin-density-wave%20amplitude%20locked%20to%20the%20cycloid%20for%20different%20strains%2C%20and%20find%20unexpected%20deviations%20of%20the%20exotic%20cycloid%20direction%20with%20respect%20to%20the%20crystallographic%20axes.%22%2C%22date%22%3A%222022%5C%2F04%5C%2F26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.17.044051%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A12%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22MH5KDVF6%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hawecker%20et%20al.%22%2C%22parsedDate%22%3A%222022-03-24%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EJ.%20Hawecker%2C%20E.%20Rongione%2C%20A.%20Markou%2C%20S.%20Krishnia%2C%20F.%20Godel%2C%20S.%20Collin%2C%20R.%20Lebrun%2C%20J.%20Tignon%2C%20J.%20Mangeney%2C%20T.%20Boulier%2C%20J.-M.%20George%2C%20C.%20Felser%2C%20H.%20Jaffr%26%23xE8%3Bs%2C%20S.%20Dhillon%2C%20Spintronic%20THz%20emitters%20based%20on%20transition%20metals%20and%20semi-metals%5C%2FPt%20multilayers%2C%20Applied%20Physics%20Letters%20120%20%282022%29%20122406.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0079955%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0079955%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spintronic%20THz%20emitters%20based%20on%20transition%20metals%20and%20semi-metals%5C%2FPt%20multilayers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Hawecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Rongione%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Markou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Krishnia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lebrun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tignon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Mangeney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Boulier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-M.%22%2C%22lastName%22%3A%22George%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Felser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Jaffr%5Cu00e8s%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Dhillon%22%7D%5D%2C%22abstractNote%22%3A%22Spintronic%20terahertz%20%28THz%29%20emitters%20based%20on%20the%20inverse%20spin%20Hall%20effect%20in%20ferromagnetic%5C%2Fheavy%20metal%20%28FM%5C%2FHM%29%20heterostructures%20have%20become%20important%20sources%20for%20THz%20pulse%20generation.%20The%20design%2C%20materials%2C%20and%20control%20of%20these%20interfaces%20at%20the%20nanometer%20level%20have%20become%20vital%20to%20engineer%20their%20THz%20emission%20properties.%20In%20this%20work%2C%20we%20present%20studies%20of%20the%20optimization%20of%20such%20structures%20through%20a%20multi-pronged%20approach%2C%20taking%20advantage%20of%20material%20and%20interface%20engineering%20to%20enhance%20THz%20spintronic%20emission.%20This%20includes%20the%20application%20of%20multi-stacks%20of%20HM%5C%2FFM%20junctions%20and%20their%20application%20to%20trilayer%20structures%2C%20the%20use%20of%20spin-sinks%20to%20simultaneously%20enhance%20the%20THz%20emitted%20fields%20and%20reduce%20the%20use%20of%20thick%20Pt%20layers%20to%20reduce%20optical%20absorption%2C%20and%20the%20use%20of%20semi-metals%20to%20increase%20the%20spin%20polarization%20and%2C%20thus%2C%20THz%20emission.%20Through%20these%20approaches%2C%20significant%20enhancements%20of%20the%20THz%20field%20can%20be%20achieved.%20Importantly%2C%20taking%20into%20account%20the%20optical%20absorption%20permits%20to%20elucidate%20novel%20phenomena%20such%20as%20the%20relation%20between%20the%20spin%20diffusion%20length%20and%20the%20spin-sink%20using%20THz%20spectroscopy%2C%20as%20well%20as%20possibly%20distinguishing%20between%20self-%20and%20interface-spin-to-charge%20conversion%20in%20semi-metals.%22%2C%22date%22%3A%222022-03-24%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0079955%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A08%3A19Z%22%7D%7D%2C%7B%22key%22%3A%22UK5AL6SR%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Naganuma%20et%20al.%22%2C%22parsedDate%22%3A%222022-02-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EH.%20Naganuma%2C%20M.%20Nishijima%2C%20H.%20Adachi%2C%20M.%20Uemoto%2C%20H.%20Shinya%2C%20S.%20Yasui%2C%20H.%20Morioka%2C%20A.%20Hirata%2C%20F.%20Godel%2C%20M.-B.%20Martin%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20K.%20Amemiya%2C%20Unveiling%20a%20Chemisorbed%20Crystallographically%20Heterogeneous%20Graphene%5C%2FL10-FePd%20Interface%20with%20a%20Robust%20and%20Perpendicular%20Orbital%20Moment%2C%20ACS%20Nano%2016%20%282022%29%204139.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.1c09843%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.1c09843%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Unveiling%20a%20Chemisorbed%20Crystallographically%20Heterogeneous%20Graphene%5C%2FL10-FePd%20Interface%20with%20a%20Robust%20and%20Perpendicular%20Orbital%20Moment%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Naganuma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Nishijima%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Adachi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Uemoto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Shinya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Yasui%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Morioka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Hirata%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Amemiya%22%7D%5D%2C%22abstractNote%22%3A%22A%20crystallographically%20heterogeneous%20interface%20was%20fabricated%20by%20growing%20hexagonal%20graphene%20%28Gr%29%20using%20chemical%20vapor%20deposition%20%28CVD%29%20on%20a%20tetragonal%20FePd%20epitaxial%20film%20grown%20by%20magnetron%20sputtering.%20FePd%20was%20alternately%20arranged%20with%20Fe%20and%20Pd%20in%20the%20vertical%20direction%2C%20and%20the%20outermost%20surface%20atom%20was%20identified%20primarily%20as%20Fe%20rather%20than%20Pd.%20This%20means%20that%20FePd%20has%20a%20high%20degree%20of%20L10-ordering%2C%20and%20the%20outermost%20Fe%20bonds%20to%20the%20carbon%20of%20Gr%20at%20the%20interface.%20When%20Gr%20is%20grown%20by%20CVD%2C%20the%20crystal%20orientation%20of%20hexagonal%20Gr%20toward%20tetragonal%20L10-FePd%20selects%20an%20energetically%20stable%20structure%20based%20on%20the%20van%20der%20Waals%20%28vdW%29%20force.%20The%20atomic%20relationship%20of%20Gr%5C%2FL10-FePd%2C%20which%20is%20an%20energetically%20stable%20interface%2C%20was%20unveiled%20theoretically%20and%20experimentally.%20The%20Gr%20armchair%20axis%20was%20parallel%20to%20FePd%20%5B100%5DL10%2C%20where%20Gr%20was%20under%20a%20small%20strain%20by%20chemical%20bonding.%20Focusing%20on%20the%20interatomic%20distance%20between%20the%20Gr%20and%20FePd%20layers%2C%20the%20distance%20was%20theoretically%20and%20experimentally%20determined%20to%20be%20approximately%200.2%20nm.%20This%20shorter%20distance%20%28%5Cu22480.2%20nm%29%20can%20be%20explained%20by%20the%20chemisorption-type%20vdW%20force%20of%20strong%20orbital%20hybridization%2C%20rather%20than%20the%20longer%20distance%20%28%5Cu22480.38%20nm%29%20of%20the%20physisorption-type%20vdW%20force.%20Notably%2C%20depth-resolved%20X-ray%20magnetic%20circular%20dichroism%20analyses%20revealed%20that%20the%20orbital%20magnetic%20moment%20%28Ml%29%20of%20Fe%20in%20FePd%20emerged%20at%20the%20Gr%5C%2FFePd%20interface%20%28%40inner%20FePd%3A%20Ml%20%3D%200.16%20%5Cu03bcB%20%5Cu2192%20%40Gr%5C%2FFePd%20interface%3A%20Ml%20%3D%200.32%20%5Cu03bcB%29.%20This%20interfacially%20enhanced%20Ml%20showed%20obvious%20anisotropy%20in%20the%20perpendicular%20direction%2C%20which%20contributed%20to%20interfacial%20perpendicular%20magnetic%20anisotropy%20%28IPMA%29.%20Moreover%2C%20the%20interfacially%20enhanced%20Ml%20and%20interfacially%20enhanced%20electron%20density%20exhibited%20robustness.%20It%20is%20considered%20that%20the%20shortening%20of%20the%20interatomic%20distance%20produces%20a%20robust%20high%20electron%20density%20at%20the%20interface%2C%20resulting%20in%20a%20chemisorption-type%20vdW%20force%20and%20orbital%20hybridization.%20Eventually%2C%20the%20robust%20interfacial%20anisotropic%20Ml%20emerged%20at%20the%20crystallographically%20heterogeneous%20Gr%5C%2FL10-FePd%20interface.%20From%20a%20practical%20viewpoint%2C%20IPMA%20is%20useful%20because%20it%20can%20be%20incorporated%20into%20the%20large%20bulk%20perpendicular%20magnetic%20anisotropy%20%28PMA%29%20of%20L10-FePd.%20A%20micromagnetic%20simulation%20assuming%20both%20PMA%20and%20IPMA%20predicted%20that%20perpendicularly%20magnetized%20magnetic%20tunnel%20junctions%20%28p-MTJs%29%20using%20Gr%5C%2FL10-FePd%20could%20realize%2010-year%20data%20retention%20in%20a%20small%20recording%20layer%20with%20a%20circular%20diameter%20and%20thickness%20of%2010%20and%202%20nm%2C%20respectively.%20We%20unveiled%20the%20energetically%20stable%20atomic%20structure%20in%20the%20crystallographically%20heterogeneous%20interface%2C%20discovered%20the%20emergence%20of%20the%20robust%20IPMA%2C%20and%20predicted%20that%20the%20Gr%5C%2FL10-FePd%20p-MTJ%20is%20significant%20for%20high-density%20X%20nm%20generation%20magnetic%20random-access%20memory%20%28MRAM%29%20applications.%22%2C%22date%22%3A%22February%2028%2C%202022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsnano.1c09843%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A10%3A01Z%22%7D%7D%2C%7B%22key%22%3A%22WE9EY3CX%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Joly%20et%20al.%22%2C%22parsedDate%22%3A%222022-02-25%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EL.%20Joly%2C%20F.%20Scheurer%2C%20P.%20Ohresser%2C%20B.%20Kengni-Zanguim%2C%20J.-F.%20Dayen%2C%20P.%20Seneor%2C%20B.%20Dlubak%2C%20F.%20Godel%2C%20D.%20Halley%2C%20X-ray%20magnetic%20dichroism%20and%20tunnel%20magneto-resistance%20study%20of%20the%20magnetic%20phase%20in%20epitaxial%20CrVO%20x%20nanoclusters%2C%20J.%20Phys.%3A%20Condens.%20Matter%2034%20%282022%29%20175801.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Fac4f5e%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Fac4f5e%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22X-ray%20magnetic%20dichroism%20and%20tunnel%20magneto-resistance%20study%20of%20the%20magnetic%20phase%20in%20epitaxial%20CrVO%20x%20nanoclusters%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Joly%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Scheurer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Ohresser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Kengni-Zanguim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-F.%22%2C%22lastName%22%3A%22Dayen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Halley%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-02-25%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-648X%5C%2Fac4f5e%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A08%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22BHFJSW7T%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Martin%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EP.%20Martin%2C%20B.%20Dlubak%2C%20R.%20Mattana%2C%20P.%20Seneor%2C%20M.-B.%20Martin%2C%20T.%20Henner%2C%20F.%20Godel%2C%20A.%20Sander%2C%20S.%20Collin%2C%20L.%20Chen%2C%20S.%20Suffit%2C%20F.%20Mallet%2C%20P.%20Lafarge%2C%20M.L.%20Della%20Rocca%2C%20A.%20Droghetti%2C%20C.%20Barraud%2C%20Combined%20spin%20filtering%20actions%20in%20hybrid%20magnetic%20junctions%20based%20on%20organic%20chains%20covalently%20attached%20to%20graphene%2C%20Nanoscale%2014%20%282022%29%2012692.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD2NR01917E%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD2NR01917E%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Combined%20spin%20filtering%20actions%20in%20hybrid%20magnetic%20junctions%20based%20on%20organic%20chains%20covalently%20attached%20to%20graphene%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Mattana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Henner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Sander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Suffit%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Mallet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Lafarge%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.L.%22%2C%22lastName%22%3A%22Della%20Rocca%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Droghetti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Barraud%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD2NR01917E%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A09%3A48Z%22%7D%7D%2C%7B%22key%22%3A%223747GCT5%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lee%20et%20al.%22%2C%22parsedDate%22%3A%222021-10-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EJ.H.%20Lee%2C%20T.%20Harada%2C%20F.%20Trier%2C%20L.%20Marcano%2C%20F.%20Godel%2C%20S.%20Valencia%2C%20A.%20Tsukazaki%2C%20M.%20Bibes%2C%20Nonreciprocal%20Transport%20in%20a%20Rashba%20Ferromagnet%2C%20Delafossite%20PdCoO2%2C%20Nano%20Letters%2021%20%282021%29%208687.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.1c02756%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.1c02756%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Nonreciprocal%20Transport%20in%20a%20Rashba%20Ferromagnet%2C%20Delafossite%20PdCoO2%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.H.%22%2C%22lastName%22%3A%22Lee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Harada%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Trier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Marcano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Valencia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Tsukazaki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bibes%22%7D%5D%2C%22abstractNote%22%3A%22Rashba%20interfaces%20yield%20efficient%20spin-charge%20interconversion%20and%20give%20rise%20to%20nonreciprocal%20transport%20phenomena.%20Here%2C%20we%20report%20magnetotransport%20experiments%20in%20few-nanometer-thick%20films%20of%20PdCoO2%2C%20a%20delafossite%20oxide%20known%20to%20display%20a%20large%20Rashba%20splitting%20and%20surface%20ferromagnetism.%20By%20analyzing%20the%20angle%20dependence%20of%20the%20first-%20and%20second-harmonic%20longitudinal%20and%20transverse%20resistivities%2C%20we%20identify%20a%20Rashba-driven%20unidirectional%20magnetoresistance%20that%20competes%20with%20the%20anomalous%20Nernst%20effect%20below%20the%20Curie%20point.%20We%20estimate%20a%20Rashba%20coefficient%20of%200.75%20%5Cu00b1%200.3%20eV%20%5Cu00c5%20and%20argue%20that%20our%20results%20qualify%20delafossites%20as%20a%20new%20family%20of%20oxides%20for%20nanospintronics%20and%20spin%5Cu2013orbitronics%2C%20beyond%20perovskite%20materials.%22%2C%22date%22%3A%22October%206%2C%202021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.nanolett.1c02756%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A55%3A45Z%22%7D%7D%2C%7B%22key%22%3A%22WABLDEW8%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Brus%20et%20al.%22%2C%22parsedDate%22%3A%222021-04-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EP.%20Brus%2C%20V.%20Zatko%2C%20M.%20Galbiati%2C%20F.%20Godel%2C%20S.%20Collin%2C%20B.%20Servet%2C%20S.%20Xavier%2C%20R.%20Aubry%2C%20P.%20Garabedian%2C%20M.-B.%20Martin%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20O.%20Bezencenet%2C%20Large%26%23x2010%3BScale%26%23x2010%3BCompatible%20Stabilization%20of%20a%202D%20Semiconductor%20Platform%20toward%20Discrete%20Components%2C%20Advanced%20Electronic%20Materials%207%20%282021%29%202001109.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Faelm.202001109%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Faelm.202001109%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Large%5Cu2010Scale%5Cu2010Compatible%20Stabilization%20of%20a%202D%20Semiconductor%20Platform%20toward%20Discrete%20Components%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Brus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Servet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Xavier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Aubry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Garabedian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Bezencenet%22%7D%5D%2C%22abstractNote%22%3A%22Atomically%20thin%202D%20semiconductors%20are%20strong%20candidates%20for%20the%20tetrad%20of%20size%5Cu2010weight%5Cu2010power%5Cu2010and%5Cu2010cost%20%28SWAP%5Cu2010C%29%20reduction%20for%20many%20devices.%20This%20work%20focuses%20on%20the%20evaluation%20of%20a%20large%5Cu2010scale%20compatib...%22%2C%22date%22%3A%222021%5C%2F04%5C%2F01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Faelm.202001109%22%2C%22ISSN%22%3A%222199-160X%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A51%3A59Z%22%7D%7D%2C%7B%22key%22%3A%22MLJZ57QJ%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zatko%20et%20al.%22%2C%22parsedDate%22%3A%222021-03-23%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Zatko%2C%20S.%20Dubois%2C%20F.%20Godel%2C%20C.%20Carr%26%23xE9%3Bt%26%23xE9%3Bro%2C%20A.%20Sander%2C%20S.%20Collin%2C%20M.%20Galbiati%2C%20J.%20Peiro%2C%20F.%20Panciera%2C%20G.%20Patriarche%2C%20P.%20Brus%2C%20B.%20Servet%2C%20J.-C.%20Charlier%2C%20M.-B.%20Martin%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20Band-Gap%20Landscape%20Engineering%20in%20Large-Scale%202D%20Semiconductor%20van%20der%20Waals%20Heterostructures%2C%20ACS%20Nano%2015%20%282021%29%207279.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.1c00544%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.1c00544%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Band-Gap%20Landscape%20Engineering%20in%20Large-Scale%202D%20Semiconductor%20van%20der%20Waals%20Heterostructures%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Dubois%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Carr%5Cu00e9t%5Cu00e9ro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Sander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Peiro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Panciera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Patriarche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Brus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Servet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-C.%22%2C%22lastName%22%3A%22Charlier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22We%20present%20a%20growth%20process%20relying%20on%20pulsed%20laser%20deposition%20for%20the%20elaboration%20of%20complex%20van%20der%20Waals%20heterostructures%20on%20large%20scales%2C%20at%20a%20400%20%5Cu00b0C%20CMOS-compatible%20temperature.%20Illustratively%2C%20we%20define%20a%20multilayer%20quantum%20well%20geometry%20through%20successive%20in%20situ%20growths%2C%20leading%20to%20WSe2%20being%20encapsulated%20into%20WS2%20layers.%20The%20structural%20constitution%20of%20the%20quantum%20well%20geometry%20is%20confirmed%20by%20Raman%20spectroscopy%20combined%20with%20transmission%20electron%20microscopy.%20The%20large-scale%20high%20homogeneity%20of%20the%20resulting%202D%20van%20der%20Waals%20heterostructure%20is%20also%20validated%20by%20macro-%20and%20microscale%20Raman%20mappings.%20We%20illustrate%20the%20benefit%20of%20this%20integrative%20in%20situ%20approach%20by%20showing%20the%20structural%20preservation%20of%20even%20the%20most%20fragile%202D%20layers%20once%20encapsulated%20in%20a%20van%20der%20Waals%20heterostructure.%20Finally%2C%20we%20fabricate%20a%20vertical%20tunneling%20device%20based%20on%20these%20large-scale%20layers%20and%20discuss%20the%20clear%20signature%20of%20electronic%20transport%20controlled%20by%20the%20quantum%20well%20configuration%20with%20ab%20initio%20calculations%20in%20support.%20The%20flexibility%20of%20this%20direct%20growth%20approach%2C%20with%20multilayer%20stacks%20being%20built%20in%20a%20single%20run%2C%20allows%20for%20the%20definition%20of%20complex%202D%20heterostructures%20barely%20accessible%20with%20usual%20exfoliation%20or%20transfer%20techniques%20of%202D%20materials.%20Reminiscent%20of%20the%20III%5Cu2013V%20semiconductors%5Cu2019%20successful%20exploitation%2C%20our%20approach%20unlocks%20virtually%20infinite%20combinations%20of%20large%202D%20material%20families%20in%20any%20complex%20van%20der%20Waals%20heterostructure%20design.%22%2C%22date%22%3A%22March%2023%2C%202021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsnano.1c00544%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A00%3A03Z%22%7D%7D%2C%7B%22key%22%3A%22THCJB9PB%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mouafo%20et%20al.%22%2C%22parsedDate%22%3A%222021-02-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EL.D.N.%20Mouafo%2C%20F.%20Godel%2C%20L.%20Simon%2C%20Y.J.%20Dappe%2C%20W.%20Baaziz%2C%20U.N.%20Noumb%26%23xE9%3B%2C%20E.%20Lorchat%2C%20M.-B.%20Martin%2C%20S.%20Berciaud%2C%20B.%20Doudin%2C%20O.%20Ersen%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20J.-F.%20Dayen%2C%200D%5C%2F2D%20Heterostructures%20Vertical%20Single%20Electron%20Transistor%2C%20Advanced%20Functional%20Materials%2031%20%282021%29%202008255.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadfm.202008255%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadfm.202008255%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%220D%5C%2F2D%20Heterostructures%20Vertical%20Single%20Electron%20Transistor%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.D.N%22%2C%22lastName%22%3A%22Mouafo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Simon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.J.%22%2C%22lastName%22%3A%22Dappe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%22%2C%22lastName%22%3A%22Baaziz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22U.N.%22%2C%22lastName%22%3A%22Noumb%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Lorchat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Berciaud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Ersen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-F.%22%2C%22lastName%22%3A%22Dayen%22%7D%5D%2C%22abstractNote%22%3A%22The%20concept%20of%200D%5Cu20132D%20vertical%20single%20electron%20transistors%20is%20unveiled.%20It%20allows%20to%20combine%20the%20large%20Coulomb%20energy%20of%20nanoclusters%20with%20the%20electronic%20capabilities%20of%20a%20two%5Cu2010dimensional%20channel%2C%20act...%22%2C%22date%22%3A%222021%5C%2F02%5C%2F01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadfm.202008255%22%2C%22ISSN%22%3A%221616-3028%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A56%3A42Z%22%7D%7D%2C%7B%22key%22%3A%22GAJQYPRR%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dang%20et%20al.%22%2C%22parsedDate%22%3A%222020-12-07%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ET.H.%20Dang%2C%20J.%20Hawecker%2C%20E.%20Rongione%2C%20G.B.%20Flores%2C%20D.Q.%20To%2C%20J.C.%20Rojas-Sanchez%2C%20H.%20Nong%2C%20J.%20Mangeney%2C%20J.%20Tignon%2C%20F.%20Godel%2C%20S.%20Collin%2C%20P.%20Seneor%2C%20M.%20Bibes%2C%20A.%20Fert%2C%20M.%20Anane%2C%20J.-M.%20George%2C%20L.%20Vila%2C%20M.%20Cosset-Cheneau%2C%20D.%20Dolfi%2C%20R.%20Lebrun%2C%20P.%20Bortolotti%2C%20K.%20Belashchenko%2C%20S.%20Dhillon%2C%20H.%20Jaffr%26%23xE8%3Bs%2C%20Ultrafast%20spin-currents%20and%20charge%20conversion%20at%203d-5d%20interfaces%20probed%20by%20time-domain%20terahertz%20spectroscopy%2C%20Applied%20Physics%20Reviews%207%20%282020%29%20041409.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0022369%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0022369%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ultrafast%20spin-currents%20and%20charge%20conversion%20at%203d-5d%20interfaces%20probed%20by%20time-domain%20terahertz%20spectroscopy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20H.%22%2C%22lastName%22%3A%22Dang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Hawecker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Rongione%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%20Baez%22%2C%22lastName%22%3A%22Flores%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20Q.%22%2C%22lastName%22%3A%22To%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20C.%22%2C%22lastName%22%3A%22Rojas-Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Nong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Mangeney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tignon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bibes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Fert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Anane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-M.%22%2C%22lastName%22%3A%22George%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Vila%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Cosset-Cheneau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Dolfi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lebrun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Bortolotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Belashchenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Dhillon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Jaffr%5Cu00e8s%22%7D%5D%2C%22abstractNote%22%3A%22Spintronic%20structures%20are%20extensively%20investigated%20for%20their%20spin%5Cu2013orbit%20torque%20properties%2C%20required%20for%20magnetic%20commutation%20functionalities.%20Current%20progress%20in%20these%20materials%20is%20dependent%20on%20the%20interface%20engineering%20for%20the%20optimization%20of%20spin%20transmission.%20Here%2C%20we%20advance%20the%20analysis%20of%20ultrafast%20spin-charge%20conversion%20phenomena%20at%20ferromagnetic-transition%20metal%20interfaces%20due%20to%20their%20inverse%20spin-Hall%20effect%20properties.%20In%20particular%2C%20the%20intrinsic%20inverse%20spin-Hall%20effect%20of%20Pt-based%20systems%20and%20extrinsic%20inverse%20spin-Hall%20effect%20of%20Au%3AW%20and%20Au%3ATa%20in%20NiFe%5C%2FAu%3A%28W%2CTa%29%20bilayers%20are%20investigated.%20The%20spin-charge%20conversion%20is%20probed%20by%20complementary%20techniques%5Cu2014ultrafast%20THz%20time-domain%20spectroscopy%20in%20the%20dynamic%20regime%20for%20THz%20pulse%20emission%20and%20ferromagnetic%20resonance%20spin-pumping%20measurements%20in%20the%20GHz%20regime%20in%20the%20steady%20state%5Cu2014to%20determine%20the%20role%20played%20by%20the%20material%20properties%2C%20resistivities%2C%20spin%20transmission%20at%20metallic%20interfaces%2C%20and%20spin-flip%20rates.%20These%20measurements%20show%20the%20correspondence%20between%20the%20THz%20time-domain%20spectroscopy%20and%20ferromagnetic%20spin-pumping%20for%20the%20different%20set%20of%20samples%20in%20term%20of%20the%20spin%20mixing%20conductance.%20The%20latter%20quantity%20is%20a%20critical%20parameter%2C%20determining%20the%20strength%20of%20the%20THz%20emission%20from%20spintronic%20interfaces.%20This%20is%20further%20supported%20by%20ab%20initio%20calculations%2C%20simulations%2C%20and%20analysis%20of%20the%20spin-diffusion%20and%20spin-relaxation%20of%20carriers%20within%20the%20multilayers%20in%20the%20time%20domain%2C%20permitting%20one%20to%20determine%20the%20main%20trends%20and%20the%20role%20of%20spin%20transmission%20at%20interfaces.%20This%20work%20illustrates%20that%20time-domain%20spectroscopy%20for%20spin-based%20THz%20emission%20is%20a%20powerful%20technique%20to%20probe%20spin-dynamics%20at%20active%20spintronic%20interfaces%20and%20to%20extract%20key%20material%20properties%20for%20spin-charge%20conversion.%22%2C%22date%22%3A%222020-12-07%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0022369%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A40%3A39Z%22%7D%7D%2C%7B%22key%22%3A%222BS8VAHS%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Piquemal-Banci%20et%20al.%22%2C%22parsedDate%22%3A%222020-11-09%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Piquemal-Banci%2C%20R.%20Galceran%2C%20S.M.-M.%20Dubois%2C%20V.%20Zatko%2C%20M.%20Galbiati%2C%20F.%20Godel%2C%20M.-B.%20Martin%2C%20R.-S.%20Weatherup%2C%20F.%20Petroff%2C%20A.%20Fert%2C%20J.-C.%20Charlier%2C%20J.%20Robertson%2C%20S.%20Hofmann%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20Spin%20filtering%20by%20proximity%20effects%20at%20hybridized%20interfaces%20in%20spin-valves%20with%202D%20graphene%20barriers%2C%20Nat%20Commun%2011%20%282020%29%205670.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-020-19420-6%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-020-19420-6%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spin%20filtering%20by%20proximity%20effects%20at%20hybridized%20interfaces%20in%20spin-valves%20with%202D%20graphene%20barriers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Piquemal-Banci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Galceran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20M.-M.%22%2C%22lastName%22%3A%22Dubois%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.-S.%22%2C%22lastName%22%3A%22Weatherup%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Petroff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Fert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-C.%22%2C%22lastName%22%3A%22Charlier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Robertson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Hofmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%222D%20materials%20are%20foreseen%20as%20an%20opportunity%20to%20tailor%20spintronics%20devices%20interfaces%2C%20a.k.a%20spinterfaces.%20Here%2C%20using%20state-of-the-art%20large-scale%20integration%20in%20spin-valves%2C%20authors%20demonstrate%20that%20hybridization%20of%20graphene%20with%20a%20metallic%20spin%20source%20results%20in%20strong%20spin%20filtering%20effects.%22%2C%22date%22%3A%222020-11-09%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-020-19420-6%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A45%3A11Z%22%7D%7D%2C%7B%22key%22%3A%22IBFGJINP%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Galbiati%20et%20al.%22%2C%22parsedDate%22%3A%222020-11-04%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Galbiati%2C%20V.%20Zatko%2C%20F.%20Godel%2C%20P.%20Hirschauer%2C%20A.%20Vecchiola%2C%20K.%20Bouzehouane%2C%20S.%20Collin%2C%20B.%20Servet%2C%20A.%20Cantarero%2C%20F.%20Petroff%2C%20M.-B.%20Martin%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20Very%20Long%20Term%20Stabilization%20of%20a%202D%20Magnet%20down%20to%20the%20Monolayer%20for%20Device%20Integration%2C%20ACS%20Applied%20Electronic%20Materials%202%20%282020%29%203508.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsaelm.0c00810%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsaelm.0c00810%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Very%20Long%20Term%20Stabilization%20of%20a%202D%20Magnet%20down%20to%20the%20Monolayer%20for%20Device%20Integration%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Hirschauer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bouzehouane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Servet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Cantarero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Petroff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%222D%20materials%20have%20recently%20demonstrated%20a%20strong%20potential%20for%20spintronic%20applications.%20This%20has%20been%20further%20reinforced%20by%20the%20discovery%20of%20ferromagnetic%202D%20layers.%20Nevertheless%2C%20the%20fragility%20of%20many%202D%20magnetic%20materials%20to%20ambient%20conditions%20has%20so%20far%20hindered%20their%20faster%20characterization%20and%20integration%20into%20devices.%20We%20report%20here%20on%20a%20simple%20large-scale%20method%20that%20allows%20to%20stabilize%20strongly%20air%20sensitive%20materials%2C%20such%20as%20CrBr3%2C%20down%20to%20the%20monolayer%20limit%20with%20ultrathin%20barriers%20grown%20by%20atomic%20layer%20deposition%20%28ALD%29.%20We%20focus%20on%20MgO%20as%20a%20passivation%20layer%20to%20additionally%20serve%20as%20tunnel%20spin%20injection%20barrier%20for%20spintronic%20applications.%20We%20develop%20a%20special%20removable%20combined%20protection%5Cu2013encapsulation%20stack%20to%20better%20preserve%202D%20material%20and%20MgO%20barrier%20qualities%20during%20device%20fabrication.%20This%20scheme%20allows%20to%20observe%202D%20ferromagnet%20stability%20over%20one%20year%20of%20air%20exposure%20and%20to%20demonstrate%20CrBr3%20successful%20integration%20into%20vertical%20devices.%20Overall%2C%20these%20results%20highlight%20an%20efficient%20way%20to%20handle%20these%20materials%20in%20ambient%20conditions%2C%20unlocking%20possibilities%20to%20fasten%20their%20advanced%20characterization%20and%20ease%20their%20integration%20into%20devices.%22%2C%22date%22%3A%22November%204%2C%202020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsaelm.0c00810%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A42%3A12Z%22%7D%7D%2C%7B%22key%22%3A%22DHP398AD%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dang%20et%20al.%22%2C%22parsedDate%22%3A%222020-10-02%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ET.H.%20Dang%2C%20Q.%20Barbedienne%2C%20D.Q.%20To%2C%20E.%20Rongione%2C%20N.%20Reyren%2C%20F.%20Godel%2C%20S.%20Collin%2C%20J.M.%20George%2C%20H.%20Jaffr%26%23xE8%3Bs%2C%20Anomalous%20Hall%20effect%20in%203d%5C%2F5d%20multilayers%20mediated%20by%20interface%20scattering%20and%20nonlocal%20spin%20conductivity%2C%20Phys.%20Rev.%20B%20102%20%282020%29%20144405.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.102.144405%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.102.144405%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Anomalous%20Hall%20effect%20in%203d%5C%2F5d%20multilayers%20mediated%20by%20interface%20scattering%20and%20nonlocal%20spin%20conductivity%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20H.%22%2C%22lastName%22%3A%22Dang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Q.%22%2C%22lastName%22%3A%22Barbedienne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20Q.%22%2C%22lastName%22%3A%22To%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Rongione%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Reyren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22George%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Jaffr%5Cu00e8s%22%7D%5D%2C%22abstractNote%22%3A%22We%20have%20evidenced%20unconventional%20anomalous%20Hall%20effects%20%28AHEs%29%20in%20%243d%5C%2F5d%24%20%28%24%7B%5C%5Cmathrm%7BCo%7D0.2%5C%5Cmathrm%7Bnm%7D%5C%2F%5C%5Cmathrm%7BNi%7D0.6%5C%5Cmathrm%7Bnm%7D%29%7D_%7BN%7D%24%20multilayers%20grown%20on%20a%20thin%20Pt%20layer%20or%20thin%20Au%3AW%20alloys%20with%20perpendicular%20magnetic%20anisotropy%20%28PMA%29%20properties.%20The%20inversion%20of%20AHEs%20observed%20with%20one%20Pt%20series%20is%20explained%20by%20considering%20the%20opposite%20sign%20of%20the%20effective%20spin-orbit%20coupling%20of%20Pt%20compared%20to%20Co%5C%2FNi%20combined%20with%20peculiar%20specular%20electronic%20reflections.%20Using%20advanced%20simulations%20methods%20for%20the%20description%20of%20the%20spin-current%20profiles%20based%20on%20the%20spin-dependent%20Boltzmann%20formalism%2C%20we%20extracted%20the%20spin-Hall%20angle%20%28SHA%29%20of%20Pt%20and%20Co%5C%2FNi%20of%20opposite%20sign.%20The%20extracted%20SHA%20for%20Pt%2C%20%24%2B20%25%24%2C%20is%20opposite%20to%20the%20one%20of%20Co%5C%2FNi%2C%20giving%20rise%20to%20an%20effective%20AHE%20inversion%20for%20thin%20Co%5C%2FNi%20multilayers%20%28with%20the%20number%20of%20repetition%20layers%20%24N%26lt%3B17%24%29.%20The%20spin-Hall%20angle%20in%20Pt%20is%20found%20to%20be%20larger%20than%20the%20one%20previously%20measured%20by%20complementary%20spin-pumping%20inverse%20spin-Hall%20effect%20experiments%20in%20a%20geometry%20of%20current%20perpendicular%20to%20the%20plane.%20Whereas%20magnetic%20proximity%20effects%20cannot%20explain%20the%20effect%2C%20spin-current%20leakage%20and%20spin-orbit%20assisted%20electron%20scattering%20at%20Pt%5C%2F%28Co%2CNi%29%20interfaces%20fit%20the%20experiments.%20We%20also%20extract%20the%20main%20relevant%20electronic%20transport%20parameters%20governing%20the%20overall%20effects%20in%20current-in-plane%20%28CIP%29%20currents%20and%20demonstrate%2C%20in%20particular%2C%20that%20the%20specularity%5C%2Fnonspecularity%20in%20the%20electronic%20diffusion%20processes%20play%20an%20essential%20role%20to%20explain%20the%20observed%20results.%22%2C%22date%22%3A%222020%5C%2F10%5C%2F02%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.102.144405%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A40%3A35Z%22%7D%7D%2C%7B%22key%22%3A%222DHKK392%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Perconte%20et%20al.%22%2C%22parsedDate%22%3A%222020-08-18%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ED.%20Perconte%2C%20K.%20Seurre%2C%20V.%20Humbert%2C%20C.%20Ulysse%2C%20A.%20Sander%2C%20J.%20Trastoy%2C%20V.%20Zatko%2C%20F.%20Godel%2C%20P.R.%20Kidambi%2C%20S.%20Hofmann%2C%20X.P.%20Zhang%2C%20D.%20Bercioux%2C%20F.S.%20Bergeret%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20J.-E.%20Villegas%2C%20Long-Range%20Propagation%20and%20Interference%20of%20d-Wave%20Superconducting%20Pairs%20in%20Graphene%2C%20Phys.%20Rev.%20Lett.%20125%20%282020%29%20087002.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.125.087002%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.125.087002%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Long-Range%20Propagation%20and%20Interference%20of%20d-Wave%20Superconducting%20Pairs%20in%20Graphene%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Perconte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Seurre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Humbert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Ulysse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Sander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Trastoy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20R.%22%2C%22lastName%22%3A%22Kidambi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Hofmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%20P.%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Bercioux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20S.%22%2C%22lastName%22%3A%22Bergeret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-E.%22%2C%22lastName%22%3A%22Villegas%22%7D%5D%2C%22abstractNote%22%3A%22Recent%20experiments%20have%20shown%20that%20proximity%20with%20high-temperature%20superconductors%20induces%20unconventional%20superconducting%20correlations%20in%20graphene.%20Here%2C%20we%20demonstrate%20that%20those%20correlations%20propagate%20hundreds%20of%20nanometers%2C%20allowing%20for%20the%20unique%20observation%20of%20%24d%24-wave%20Andreev-pair%20interferences%20in%20%24%7B%5C%5Cmathrm%7BYBa%7D%7D_%7B2%7D%7B%5C%5Cmathrm%7BCu%7D%7D_%7B3%7D%7B%5C%5Cmathrm%7BO%7D%7D_%7B7%7D%24-graphene%20devices%20that%20behave%20as%20a%20Fabry-Perot%20cavity.%20The%20interferences%20show%20as%20a%20series%20of%20pronounced%20conductance%20oscillations%20analogous%20to%20those%20originally%20predicted%20by%20de%20Gennes--Saint-James%20for%20conventional%20metal-superconductor%20junctions.%20The%20present%20demonstration%20is%20pivotal%20to%20the%20study%20of%20exotic%20directional%20effects%20expected%20for%20nodal%20superconductivity%20in%20Dirac%20materials.%22%2C%22date%22%3A%222020%5C%2F08%5C%2F18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevLett.125.087002%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A44%3A52Z%22%7D%7D%2C%7B%22key%22%3A%2229WW3CGX%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Godel%20et%20al.%22%2C%22parsedDate%22%3A%222020-07-29%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EF.%20Godel%2C%20V.%20Zatko%2C%20C.%20Carr%26%23xE9%3Bt%26%23xE9%3Bro%2C%20A.%20Sander%2C%20M.%20Galbiati%2C%20A.%20Vecchiola%2C%20P.%20Brus%2C%20O.%20Bezencenet%2C%20B.%20Servet%2C%20M.-B.%20Martin%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20WS2%202D%20Semiconductor%20Down%20to%20Monolayers%20by%20Pulsed-Laser%20Deposition%20for%20Large-Scale%20Integration%20in%20Electronics%20and%20Spintronics%20Circuits%2C%20ACS%20Applied%20Nano%20Materials%203%20%282020%29%207908.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsanm.0c01408%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsanm.0c01408%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22WS2%202D%20Semiconductor%20Down%20to%20Monolayers%20by%20Pulsed-Laser%20Deposition%20for%20Large-Scale%20Integration%20in%20Electronics%20and%20Spintronics%20Circuits%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Carr%5Cu00e9t%5Cu00e9ro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Sander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Brus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Bezencenet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Servet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20on%20the%20achievement%20of%20a%20large-scale%20tungsten%20disulfide%20%28WS2%29%202D%20semiconducting%20platform%20derived%20by%20pulsed-laser%20deposition%20%28PLD%29%20on%20both%20insulating%20substrates%20%28SrTiO3%29%2C%20as%20required%20for%20in-plane%20semiconductor%20circuit%20definition%2C%20and%20ferromagnetic%20spin%20sources%20%28Ni%29%2C%20as%20required%20for%20spintronics%20applications.%20We%20show%20thickness%20and%20phase%20control%2C%20with%20highly%20homogeneous%20wafer-scale%20monolayers%20observed%20under%20certain%20conditions%2C%20as%20demonstrated%20by%20X-ray%20photoelectron%20spectroscopy%20and%20Raman%20spectroscopy%20mappings.%20Interestingly%2C%20growth%20appears%20to%20be%20dependent%20on%20the%20substrate%20selection%2C%20with%20a%20dramatically%20increased%20growth%20rate%20on%20Ni%20substrates.%20We%20show%20that%20this%202D-semiconductor%20integration%20protocol%20preserves%20the%20interface%20integrity.%20Illustratively%2C%20the%20WS2%5C%2FNi%20electrode%20is%20shown%20to%20be%20resistant%20to%20oxidation%20%28even%20after%20extended%20exposure%20to%20ambient%20conditions%29%20and%20to%20present%20tunneling%20characteristics%20once%20integrated%20into%20a%20complete%20vertical%20device.%20Overall%2C%20these%20experiments%20show%20that%20the%20presented%20PLD%20approach%20used%20here%20for%20WS2%20growth%20is%20versatile%20and%20has%20a%20strong%20potential%20to%20accelerate%20the%20integration%20and%20evaluation%20of%20large-scale%202D-semiconductor%20platforms%20in%20electronics%20and%20spintronics%20circuits.%22%2C%22date%22%3A%22July%2029%2C%202020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsanm.0c01408%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A42%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22K3M3EBVC%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Naganuma%20et%20al.%22%2C%22parsedDate%22%3A%222020-04-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EH.%20Naganuma%2C%20V.%20Zatko%2C%20M.%20Galbiati%2C%20F.%20Godel%2C%20A.%20Sander%2C%20C.%20Carr%26%23xE9%3Bt%26%23xE9%3Bro%2C%20O.%20Bezencenet%2C%20N.%20Reyren%2C%20M.-B.%20Martin%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20A%20perpendicular%20graphene%5C%2Fferromagnet%20electrode%20for%20spintronics%2C%20Applied%20Physics%20Letters%20116%20%282020%29%20173101.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5143567%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5143567%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20perpendicular%20graphene%5C%2Fferromagnet%20electrode%20for%20spintronics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Naganuma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Sander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Carr%5Cu00e9t%5Cu00e9ro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Bezencenet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Reyren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20on%20the%20large-scale%20integration%20of%20graphene%20layers%20over%20a%20FePd%20perpendicular%20magnetic%20anisotropy%20%28PMA%29%20platform%2C%20targeting%20further%20downscaling%20of%20spin%20circuits.%20An%20L10%20FePd%20ordered%20alloy%20s...%22%2C%22date%22%3A%222020-04-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5143567%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A43%3A59Z%22%7D%7D%2C%7B%22key%22%3A%22YLVSFXA7%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Haykal%20et%20al.%22%2C%22parsedDate%22%3A%222020-04-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EA.%20Haykal%2C%20J.%20Fischer%2C%20W.%20Akhtar%2C%20J.-Y.%20Chauleau%2C%20D.%20Sando%2C%20A.%20Finco%2C%20F.%20Godel%2C%20Y.A.%20Birkh%26%23xF6%3Blzer%2C%20C.%20Carr%26%23xE9%3Bt%26%23xE9%3Bro%2C%20N.%20Jaouen%2C%20M.%20Bibes%2C%20M.%20Viret%2C%20S.%20Fusil%2C%20V.%20Jacques%2C%20V.%20Garcia%2C%20Antiferromagnetic%20textures%20in%20BiFeO3%20controlled%20by%20strain%20and%20electric%20field%2C%20Nat%20Commun%2011%20%282020%29%201704.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-020-15501-8%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-020-15501-8%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Antiferromagnetic%20textures%20in%20BiFeO3%20controlled%20by%20strain%20and%20electric%20field%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Haykal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Fischer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%22%2C%22lastName%22%3A%22Akhtar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-Y.%22%2C%22lastName%22%3A%22Chauleau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Sando%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Finco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%20A.%22%2C%22lastName%22%3A%22Birkh%5Cu00f6lzer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Carr%5Cu00e9t%5Cu00e9ro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Jaouen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bibes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Viret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Fusil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Jacques%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Garcia%22%7D%5D%2C%22abstractNote%22%3A%22Tailoring%20antiferromagnetic%20domains%20is%20critical%20for%20the%20development%20of%20low-dissipative%20spintronic%20and%20magnonic%20devices.%20Here%20the%20authors%20demonstrate%20the%20control%20of%20antiferromagnetic%20spin%20textures%20in%20multiferroic%20bismuth%20ferrite%20thin%20films%20using%20strain%20and%20electric%20fields.%22%2C%22date%22%3A%222020-04-06%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-020-15501-8%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A42%3A49Z%22%7D%7D%2C%7B%22key%22%3A%225J4JJF2E%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Palermo%20et%20al.%22%2C%22parsedDate%22%3A%222020-01-23%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EX.%20Palermo%2C%20N.%20Reyren%2C%20S.%20Mesoraca%2C%20A.V.%20Samokhvalov%2C%20S.%20Collin%2C%20F.%20Godel%2C%20A.%20Sander%2C%20K.%20Bouzehouane%2C%20J.%20Santamaria%2C%20V.%20Cros%2C%20A.I.%20Buzdin%2C%20J.-E.%20Villegas%2C%20Tailored%20Flux%20Pinning%20in%20Superconductor-Ferromagnet%20Multilayers%20with%20Engineered%20Magnetic%20Domain%20Morphology%20From%20Stripes%20to%20Skyrmions%2C%20Phys.%20Rev.%20Applied%2013%20%282020%29%20014043.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.13.014043%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.13.014043%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tailored%20Flux%20Pinning%20in%20Superconductor-Ferromagnet%20Multilayers%20with%20Engineered%20Magnetic%20Domain%20Morphology%20From%20Stripes%20to%20Skyrmions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%22%2C%22lastName%22%3A%22Palermo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Reyren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Mesoraca%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20V.%22%2C%22lastName%22%3A%22Samokhvalov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Sander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bouzehouane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Santamaria%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Cros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20I.%22%2C%22lastName%22%3A%22Buzdin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-E.%22%2C%22lastName%22%3A%22Villegas%22%7D%5D%2C%22abstractNote%22%3A%22Superconductor-ferromagnet%20%28S%5C%2FF%29%20hybrid%20systems%20show%20interesting%20magnetotransport%20behaviors%20that%20result%20from%20the%20transfer%20of%20properties%20between%20both%20constituents.%20For%20instance%2C%20magnetic%20memory%20can%20be%20transferred%20from%20the%20F%20into%20the%20S%20through%20the%20pinning%20of%20superconducting%20vortices%20by%20the%20ferromagnetic%20textures.%20The%20ability%20to%20tailor%20this%20type%20of%20induced%20behavior%20is%20important%20to%20broaden%20its%20range%20of%20application.%20Here%20we%20show%20that%20engineering%20the%20F%20magnetization%20reversal%20allows%20the%20tuning%20of%20the%20strength%20of%20the%20vortex%20pinning%20%28and%20memory%29%20effects%2C%20as%20well%20as%20the%20field%20range%20in%20which%20they%20appear.%20This%20is%20done%20by%20using%20magnetic%20multilayers%20in%20which%20Co%20thin%20films%20are%20combined%20with%20different%20heavy%20metals%20%28%24%5C%5Cmathrm%7BRu%7D%24%2C%20%24%5C%5Cmathrm%7BIr%7D%24%2C%20%24%5C%5Cmathrm%7BPt%7D%24%29.%20By%20choosing%20the%20materials%2C%20thicknesses%2C%20and%20stacking%20order%20of%20the%20layers%2C%20we%20can%20design%20the%20characteristic%20domain%20size%20and%20morphology%2C%20from%20out-of-plane%20magnetized%20stripe%20domains%20to%20much%20smaller%20magnetic%20skyrmions.%20These%20changes%20strongly%20affect%20the%20magnetotransport%20properties.%20The%20underlying%20mechanisms%20are%20identified%20by%20comparing%20the%20experimental%20results%20to%20a%20magnetic%20pinning%20model.%22%2C%22date%22%3A%222020%5C%2F01%5C%2F23%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.13.014043%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A44%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22HPK5R6KN%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zatko%20et%20al.%22%2C%22parsedDate%22%3A%222019-11-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EV.%20Zatko%2C%20M.%20Galbiati%2C%20S.%20Dubois%2C%20M.%20Och%2C%20P.%20Palczynski%2C%20C.%20Mattevi%2C%20P.%20Brus%2C%20O.%20Bezencenet%2C%20M.-B.%20Martin%2C%20B.%20Servet%2C%20J.-C.%20Charlier%2C%20F.%20Godel%2C%20A.%20Vecchiola%2C%20K.%20Bouzehouane%2C%20S.%20Collin%2C%20F.%20Petroff%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20Band-Structure%20Spin-Filtering%20in%20Vertical%20Spin%20Valves%20Based%20on%20Chemical%20Vapor%20Deposited%20WS2%2C%20ACS%20Nano%2013%20%282019%29%2014468.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.9b08178%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.9b08178%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Band-Structure%20Spin-Filtering%20in%20Vertical%20Spin%20Valves%20Based%20on%20Chemical%20Vapor%20Deposited%20WS2%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Dubois%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Och%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Palczynski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Mattevi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Brus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Bezencenet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Servet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-C.%22%2C%22lastName%22%3A%22Charlier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bouzehouane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Collin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Petroff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22We%20report%20on%20spin%20transport%20in%20WS2-based%202D-magnetic%20tunnel%20junctions%20%282D-MTJs%29%2C%20unveiling%20a%20band%20structure%20spin%20filtering%20effect%20specific%20to%20the%20transition%20metal%20dichalcogenides%20%28TMDCs%29%20family.%20WS2%20mono-%2C%20bi-%2C%20and%20trilayers%20are%20derived%20by%20a%20chemical%20vapor%20deposition%20process%20and%20further%20characterized%20by%20Raman%20spectroscopy%2C%20atomic%20force%20microscopy%20%28AFM%29%2C%20and%20photoluminescence%20spectroscopy.%20The%20WS2%20layers%20are%20then%20integrated%20in%20complete%20Co%5C%2FAl2O3%5C%2FWS2%5C%2FCo%20MTJ%20hybrid%20spin-valve%20structures.%20We%20make%20use%20of%20a%20tunnel%20Co%5C%2FAl2O3%20spin%20analyzer%20to%20probe%20the%20extracted%20spin-polarized%20current%20from%20the%20WS2%5C%2FCo%20interface%20and%20its%20evolution%20as%20a%20function%20of%20WS2%20layer%20thicknesses.%20For%20monolayer%20WS2%2C%20our%20technological%20approach%20enables%20the%20extraction%20of%20the%20largest%20spin%20signal%20reported%20for%20a%20TMDC-based%20spin%20valve%2C%20corresponding%20to%20a%20spin%20polarization%20of%20PCo%5C%2FWS2%20%3D%2012%25.%20Interestingly%2C%20for%20bi-%20and%20trilayer%20WS2%2C%20the%20spin%20signal%20is%20reversed%2C%20which%20indicates%20a%20switch%20in%20the%20mechanism%20of%20interfacial%20spin%20extraction.%20With%20the%20support%20of%20ab%20initio%20calculations%2C%20we%20propose%20a%20model%20to%20address%20the%20experimentally%20measured%20inversion%20of%20the%20spin%20polarization%20based%20on%20the%20change%20in%20the%20WS2%20band%20structure%20while%20going%20from%20monolayer%20%28direct%20bandgap%29%20to%20bilayer%20%28indirect%20bandgap%29.%20These%20experiments%20illustrate%20the%20rich%20potential%20of%20the%20families%20of%20semiconducting%202D%20materials%20for%20the%20control%20of%20spin%20currents%20in%202D-MTJs.%22%2C%22date%22%3A%22November%2027%2C%202019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsnano.9b08178%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A37%3A26Z%22%7D%7D%2C%7B%22key%22%3A%22QX9W9FVD%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Galbiati%20et%20al.%22%2C%22parsedDate%22%3A%222019-10-10%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Galbiati%2C%20S.%20Tatay%2C%20S.M.-M.%20Dubois%2C%20F.%20Godel%2C%20R.%20Galceran%2C%20S.%20Ma%26%23xF1%3Bas-Valero%2C%20M.%20Piquemal-Banci%2C%20A.%20Vecchiola%2C%20J.-C.%20Charlier%2C%20A.%20Forment-Aliaga%2C%20E.%20Coronado%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20Path%20to%20Overcome%20Material%20and%20Fundamental%20Obstacles%20in%20Spin%20Valves%20Based%20on%20MoS2%20and%20Other%20Transition-Metal%20Dichalcogenides%2C%20Phys.%20Rev.%20Applied%2012%20%282019%29%20044022.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.12.044022%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.12.044022%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Path%20to%20Overcome%20Material%20and%20Fundamental%20Obstacles%20in%20Spin%20Valves%20Based%20on%20MoS2%20and%20Other%20Transition-Metal%20Dichalcogenides%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Tatay%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20M.-M.%22%2C%22lastName%22%3A%22Dubois%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Galceran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Ma%5Cu00f1as-Valero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Piquemal-Banci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-C.%22%2C%22lastName%22%3A%22Charlier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Forment-Aliaga%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Coronado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22The%20recent%20introduction%20of%20two-dimensional%20materials%20into%20magnetic%20tunnel%20junctions%20%282D%20MTJs%29%20offers%20very%20promising%20properties%20for%20spintronics%2C%20such%20as%20atomically%20defined%20interfaces%2C%20spin%20filtering%2C%20perpendicular%20anisotropy%2C%20and%20modulation%20of%20spin-orbit%20torque.%20Nevertheless%2C%20the%20difficulty%20of%20integrating%20exfoliated%202D%20materials%20into%20spintronic%20devices%20has%20limited%20exploration.%20Here%20the%20authors%20find%20a%20fabrication%20process%20leading%20to%20superior%20performance%20in%20MTJs%20based%20on%20transition-metal%20dichalcogenides%2C%20and%20further%20suggest%20a%20path%20to%20alleviate%20basic%20issues%20of%20technology%20and%20physics%20for%202D%20MTJs.%22%2C%22date%22%3A%222019%5C%2F10%5C%2F10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.12.044022%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A34%3A20Z%22%7D%7D%2C%7B%22key%22%3A%22ZIXYJBU3%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kern%20et%20al.%22%2C%22parsedDate%22%3A%222019-02-07%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EL.-M.%20Kern%2C%20R.%20Galceran%2C%20V.%20Zatko%2C%20M.%20Galbiati%2C%20F.%20Godel%2C%20D.%20Perconte%2C%20F.%20Bouamrane%2C%20E.%20Gaufr%26%23xE8%3Bs%2C%20A.%20Loiseau%2C%20P.%20Brus%2C%20O.%20Bezencenet%2C%20M.-B.%20Martin%2C%20B.%20Servet%2C%20F.%20Petroff%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20Atomic%20layer%20deposition%20of%20a%20MgO%20barrier%20for%20a%20passivated%20black%20phosphorus%20spintronics%20platform%2C%20Applied%20Physics%20Letters%20114%20%282019%29%20053107.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5086840%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5086840%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atomic%20layer%20deposition%20of%20a%20MgO%20barrier%20for%20a%20passivated%20black%20phosphorus%20spintronics%20platform%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.-M.%22%2C%22lastName%22%3A%22Kern%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Galceran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Zatko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Perconte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Bouamrane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Gaufr%5Cu00e8s%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Loiseau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Brus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Bezencenet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Servet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Petroff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22We%20demonstrate%20a%20stabilized%20black%20phosphorus%20%28BP%29%202D%20platform%20thanks%20to%20an%20ultrathin%20MgO%20barrier%2C%20as%20required%20for%20spintronic%20device%20integration.%20The%20in-situ%20MgO%20layer%20deposition%20is%20achieved%20by%20using%20a%20large-scale%20atomic%20layer%20deposition%20process%20with%20high%20nucleation%20density.%20Raman%20spectroscopy%20studies%20show%20that%20this%20layer%20protects%20the%20BP%20from%20degradation%20in%20ambient%20conditions%2C%20unlocking%20in%20particular%20the%20possibility%20to%20carry%20out%20usual%20lithographic%20fabrication%20steps.%20The%20resulting%20MgO%5C%2FBP%20stack%20is%20then%20integrated%20in%20a%20device%20and%20probed%20electrically%2C%20confirming%20the%20tunnel%20properties%20of%20the%20ultrathin%20MgO%20contacts.%20We%20believe%20that%20this%20demonstration%20of%20a%20BP%20material%20platform%20passivated%20with%20a%20functional%20MgO%20tunnel%20barrier%20provides%20a%20promising%20perspective%20for%20BP%20spin%20transport%20devices.%22%2C%22date%22%3A%222019-02-07%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5086840%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A34%3A42Z%22%7D%7D%2C%7B%22key%22%3A%229DL2YHDJ%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mouafo%20et%20al.%22%2C%22parsedDate%22%3A%222018-09-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EL.D.N.%20Mouafo%2C%20F.%20Godel%2C%20G.%20Melinte%2C%20S.%20Hajjar%26%23x2010%3BGarreau%2C%20H.%20Majjad%2C%20B.%20Dlubak%2C%20O.%20Ersen%2C%20B.%20Doudin%2C%20L.%20Simon%2C%20P.%20Seneor%2C%20J.-F.%20Dayen%2C%20Anisotropic%20Magneto%26%23x2010%3BCoulomb%20Properties%20of%202D%26%23x2013%3B0D%20Heterostructure%20Single%20Electron%20Device%2C%20Advanced%20Materials%2030%20%282018%29.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadma.201802478%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadma.201802478%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Anisotropic%20Magneto%5Cu2010Coulomb%20Properties%20of%202D%5Cu20130D%20Heterostructure%20Single%20Electron%20Device%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.D.N%22%2C%22lastName%22%3A%22Mouafo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Melinte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Hajjar%5Cu2010Garreau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Majjad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Ersen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Doudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Simon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-F.%22%2C%22lastName%22%3A%22Dayen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018%5C%2F09%5C%2F01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadma.201802478%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T11%3A22%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22L9QMK456%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Galbiati%20et%20al.%22%2C%22parsedDate%22%3A%222018-08-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Galbiati%2C%20A.%20Vecchiola%2C%20S.%20Ma%26%23xF1%3Bas-Valero%2C%20J.%20Canet-Ferrer%2C%20R.%20Galceran%2C%20M.%20Piquemal-Banci%2C%20F.%20Godel%2C%20A.%20Forment-Aliaga%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20E.%20Coronado%2C%20A%20Local%20Study%20of%20the%20Transport%20Mechanisms%20in%20MoS2%20Layers%20for%20Magnetic%20Tunnel%20Junctions%2C%20ACS%20Applied%20Materials%20%26amp%3B%20Interfaces%2010%20%282018%29%2030017.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.8b08853%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.8b08853%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Local%20Study%20of%20the%20Transport%20Mechanisms%20in%20MoS2%20Layers%20for%20Magnetic%20Tunnel%20Junctions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Galbiati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Ma%5Cu00f1as-Valero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Canet-Ferrer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Galceran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Piquemal-Banci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Forment-Aliaga%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Coronado%22%7D%5D%2C%22abstractNote%22%3A%22A%20Local%20Study%20of%20the%20Transport%20Mechanisms%20in%20MoS2%20Layers%20for%20Magnetic%20Tunnel%20Junctions%22%2C%22date%22%3A%22August%206%2C%202018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsami.8b08853%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T11%3A20%3A16Z%22%7D%7D%2C%7B%22key%22%3A%22YA2E6Y5X%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Piquemal-Banci%20et%20al.%22%2C%22parsedDate%22%3A%222018-04-26%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Piquemal-Banci%2C%20R.%20Galceran%2C%20F.%20Godel%2C%20S.%20Caneva%2C%20M.-B.%20Martin%2C%20R.-S.%20Weatherup%2C%20P.-R.%20Kidambi%2C%20K.%20Bouzehouane%2C%20S.%20Xavier%2C%20A.%20Anane%2C%20F.%20Petroff%2C%20A.%20Fert%2C%20S.%20Dubois%2C%20J.-C.%20Charlier%2C%20J.%20Robertson%2C%20S.%20Hofmann%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20Insulator-to-Metallic%20Spin-Filtering%20in%202D-Magnetic%20Tunnel%20Junctions%20Based%20on%20Hexagonal%20Boron%20Nitride%2C%20ACS%20Nano%2012%20%282018%29%204712.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.8b01354%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.8b01354%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Insulator-to-Metallic%20Spin-Filtering%20in%202D-Magnetic%20Tunnel%20Junctions%20Based%20on%20Hexagonal%20Boron%20Nitride%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Piquemal-Banci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Galceran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Caneva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.-S.%22%2C%22lastName%22%3A%22Weatherup%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.-R.%22%2C%22lastName%22%3A%22Kidambi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Bouzehouane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Xavier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Petroff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Fert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22SMM%22%2C%22lastName%22%3A%22Dubois%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.-C%22%2C%22lastName%22%3A%22Charlier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Robertson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Hofmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22Insulator-to-Metallic%20Spin-Filtering%20in%202D-Magnetic%20Tunnel%20Junctions%20Based%20on%20Hexagonal%20Boron%20Nitride%22%2C%22date%22%3A%22April%2026%2C%202018%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsnano.8b01354%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T11%3A23%3A27Z%22%7D%7D%2C%7B%22key%22%3A%22B2T7UHR5%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Galceran%20et%20al.%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ER.%20Galceran%2C%20E.%20Gaufres%2C%20A.%20Loiseau%2C%20M.%20Piquemal-Banci%2C%20F.%20Godel%2C%20A.%20Vecchiola%2C%20O.%20Bezencenet%2C%20M.-B.%20Martin%2C%20B.%20Servet%2C%20F.%20Petroff%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%20Stabilizing%20ultra-thin%20black%20phosphorus%20with%20in-situ-grown%201%20nm-Al2O3%20barrier%2C%20Applied%20Physics%20Letters%20111%20%282017%29%20243101.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5008484%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F1.5008484%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Stabilizing%20ultra-thin%20black%20phosphorus%20with%20in-situ-grown%201%20nm-Al2O3%20barrier%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Galceran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Gaufres%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Loiseau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Piquemal-Banci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Bezencenet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Servet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Petroff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22Exfoliated%20black%20phosphorus%20is%20a%202D%20semiconductor%20with%20promising%20properties%20for%20electronics%2C%20spintronics%2C%20and%20optoelectronics.%20Nevertheless%2C%20its%20rapid%20degradation%20in%20air%20renders%20its%20integration%20and%20use%20in%20devices%20particularly%20challenging%5Cu2014even%20more%20so%20for%20smaller%20thicknesses%20for%20which%20the%20degradation%20rate%20is%20tremendously%20enhanced.%20In%20order%20to%20effectively%20protect%20the%20thinnest%20flakes%2C%20we%20present%20here%20an%20approach%20based%20on%20an%20in-situ%20dielectric%20capping%20to%20avoid%20all%20contact%20with%20air.%20Optical%20microscopy%2C%20Raman%20spectroscopy%2C%20and%20atomic%20force%20microscopy%20studies%20confirm%20that%201%20nm%20of%20Al2O3%20efficiently%20passivates%20exfoliated%20black%20phosphorus%20%28below%205%20layers%29%20on%20Si%5C%2FSiO2%20substrates.%20Such%20an%20ultrathin%20and%20transparent%20passivation%20layer%20can%20act%20as%20a%20tunnel%20barrier%20allowing%20for%20black%20phosphorus%20devices%20processing%20without%20passivation%20layer%20removal.%22%2C%22date%22%3A%22d%5Cu00e9cembre%202017%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F1.5008484%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222018-01-31T14%3A32%3A45Z%22%7D%7D%2C%7B%22key%22%3A%22NQQ5KPHP%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Piquemal-Banci%20et%20al.%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EM.%20Piquemal-Banci%2C%20R.%20Galceran%2C%20M.-B.%20Martin%2C%20F.%20Godel%2C%20A.%20Anane%2C%20F.%20Petroff%2C%20B.%20Dlubak%2C%20P.%20Seneor%2C%202D-MTJs%3A%20introducing%202D%20materials%20in%20magnetic%20tunnel%20junctions%2C%20J.%20Phys.%20D%3A%20Appl.%20Phys.%2050%20%282017%29%20203002.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Faa650f%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-6463%5C%2Faa650f%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%222D-MTJs%3A%20introducing%202D%20materials%20in%20magnetic%20tunnel%20junctions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Piquemal-Banci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Galceran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.-B.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Godel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Petroff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Dlubak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Seneor%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%22avril%202017%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-6463%5C%2Faa650f%22%2C%22ISSN%22%3A%220022-3727%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222018-01-31T14%3A32%3A38Z%22%7D%7D%5D%7D
[1]
S. Husain, N.F. Prestes, O. Fayet, S. Collin, F. Godel, E. Jacquet, T. Denneulin, R.E. Dunin-Borkowski, A. Thiaville, M. Bibes, H. Jaffrès, N. Reyren, A. Fert, J.-M. George, Field-Free Switching of Perpendicular Magnetization in an Ultrathin Epitaxial Magnetic Insulator, Nano Letters 24 (2024) 2743. https://doi.org/10.1021/acs.nanolett.3c04413.
[1]
T. da Câmara Santa Clara Gomes, T. Bhatnagar-Schöffmann, S. Krishnia, Y. Sassi, D. Sanz-Hernández, N. Reyren, M.-B. Martin, F. Brunnett, S. Collin, F. Godel, S. Ono, D. Querlioz, D. Ravelosona, V. Cros, J. Grollier, P. Seneor, L. Herrera Diez, Control of the magnetic anisotropy in multirepeat Pt/Co/Al heterostructures using magnetoionic gating, Phys. Rev. Appl. 21 (2024) 024010. https://doi.org/10.1103/PhysRevApplied.21.024010.
[1]
P. Dufour, A. Abdelsamie, J. Fischer, A. Finco, A. Haykal, M.F. Sarott, S. Varotto, C. Carrétéro, S. Collin, F. Godel, N. Jaouen, M. Viret, M. Trassin, K. Bouzehouane, V. Jacques, J.-Y. Chauleau, S. Fusil, V. Garcia, Onset of Multiferroicity in Prototypical Single-Spin Cycloid BiFeO3 Thin Films, Nano Letters 23 (2023) 9073. https://doi.org/10.1021/acs.nanolett.3c02875.
[1]
M. Grelier, F. Godel, A. Vecchiola, S. Collin, K. Bouzehouane, V. Cros, N. Reyren, R. Battistelli, H. Popescu, C. Léveillé, N. Jaouen, F. Büttner, X-ray holography of skyrmionic cocoons in aperiodic magnetic multilayers, Phys. Rev. B 107 (2023) L220405. https://doi.org/10.1103/PhysRevB.107.L220405.
[1]
P. Sethi, D. Sanz-Hernández, F. Godel, S. Krishnia, F. Ajejas, A. Mizrahi, V. Cros, D. Marković, J. Grollier, Compensation of Anisotropy in Spin Hall Devices for Neuromorphic Applications, Phys. Rev. Appl. 19 (2023) 064018. https://doi.org/10.1103/PhysRevApplied.19.064018.
[1]
P. Dufour, T. Maroutian, M. Vallet, K. Patel, A. Chanthbouala, C. Jacquemont, L. Yedra, V. Humbert, F. Godel, B. Xu, S. Prosandeev, L. Bellaiche, M. Otoničar, S. Fusil, B. Dkhil, V. Garcia, Ferroelectric phase transitions in epitaxial antiferroelectric PbZrO3 thin films, Applied Physics Reviews 10 (2023) 021405. https://doi.org/10.1063/5.0143892.
[1]
S. Husain, N. Figueiredo-Prestes, O. Fayet, S. Collin, F. Godel, E. Jacquet, N. Reyren, H. Jaffrès, J.M. George, Origin of the anomalous Hall effect at the magnetic insulator/heavy metals interface, Applied Physics Letters 122 (2023) 062403. https://doi.org/10.1063/5.0132895.
[1]
V. Zatko, R. Galceran, M. Galbiati, J. Peiro, F. Godel, L.-M. Kern, D. Perconte, F. Ibrahim, A. Hallal, M. Chshiev, B. Martinez, C. Frontera, L. Balcells, P.R. Kidambi, J. Robertson, S. Hofmann, S. Collin, F. Petroff, M.-B. Martin, B. Dlubak, P. Seneor, Artificial Graphene Spin Polarized Electrode for Magnetic Tunnel Junctions, Nano Letters 23 (2023) 34. https://doi.org/10.1021/acs.nanolett.2c03113.
[1]
M. Grelier, F. Godel, A. Vecchiola, S. Collin, K. Bouzehouane, A. Fert, V. Cros, N. Reyren, Three-dimensional skyrmionic cocoons in magnetic multilayers, Nat Commun 13 (2022) 6843. https://doi.org/10.1038/s41467-022-34370-x.
[1]
V. Zatko, S.M.-M. Dubois, F. Godel, M. Galbiati, J. Peiro, A. Sander, C. Carretero, A. Vecchiola, S. Collin, K. Bouzehouane, B. Servet, F. Petroff, J.-C. Charlier, M.-B. Martin, B. Dlubak, P. Seneor, Almost Perfect Spin Filtering in Graphene-Based Magnetic Tunnel Junctions, ACS Nano 16 (2022) 14007. https://doi.org/10.1021/acsnano.2c03625.
[1]
B. Quinard, F. Godel, M. Galbiati, V. Zatko, A. Sander, A. Vecchiola, S. Collin, K. Bouzehouane, F. Petroff, R. Mattana, M.-B. Martin, B. Dlubak, P. Seneor, A ferromagnetic spin source grown by atomic layer deposition, Applied Physics Letters 120 (2022) 213503. https://doi.org/10.1063/5.0087869.
[1]
H. Zhong, A. Finco, J. Fischer, A. Haykal, K. Bouzehouane, C. Carrétéro, F. Godel, P. Maletinsky, M. Munsch, S. Fusil, V. Jacques, V. Garcia, Quantitative Imaging of Exotic Antiferromagnetic Spin Cycloids in BiFeO3 Thin Films, Phys. Rev. Applied 17 (2022) 044051. https://doi.org/10.1103/PhysRevApplied.17.044051.
[1]
J. Hawecker, E. Rongione, A. Markou, S. Krishnia, F. Godel, S. Collin, R. Lebrun, J. Tignon, J. Mangeney, T. Boulier, J.-M. George, C. Felser, H. Jaffrès, S. Dhillon, Spintronic THz emitters based on transition metals and semi-metals/Pt multilayers, Applied Physics Letters 120 (2022) 122406. https://doi.org/10.1063/5.0079955.
[1]
H. Naganuma, M. Nishijima, H. Adachi, M. Uemoto, H. Shinya, S. Yasui, H. Morioka, A. Hirata, F. Godel, M.-B. Martin, B. Dlubak, P. Seneor, K. Amemiya, Unveiling a Chemisorbed Crystallographically Heterogeneous Graphene/L10-FePd Interface with a Robust and Perpendicular Orbital Moment, ACS Nano 16 (2022) 4139. https://doi.org/10.1021/acsnano.1c09843.
[1]
L. Joly, F. Scheurer, P. Ohresser, B. Kengni-Zanguim, J.-F. Dayen, P. Seneor, B. Dlubak, F. Godel, D. Halley, X-ray magnetic dichroism and tunnel magneto-resistance study of the magnetic phase in epitaxial CrVO x nanoclusters, J. Phys.: Condens. Matter 34 (2022) 175801. https://doi.org/10.1088/1361-648X/ac4f5e.
[1]
P. Martin, B. Dlubak, R. Mattana, P. Seneor, M.-B. Martin, T. Henner, F. Godel, A. Sander, S. Collin, L. Chen, S. Suffit, F. Mallet, P. Lafarge, M.L. Della Rocca, A. Droghetti, C. Barraud, Combined spin filtering actions in hybrid magnetic junctions based on organic chains covalently attached to graphene, Nanoscale 14 (2022) 12692. https://doi.org/10.1039/D2NR01917E.
[1]
J.H. Lee, T. Harada, F. Trier, L. Marcano, F. Godel, S. Valencia, A. Tsukazaki, M. Bibes, Nonreciprocal Transport in a Rashba Ferromagnet, Delafossite PdCoO2, Nano Letters 21 (2021) 8687. https://doi.org/10.1021/acs.nanolett.1c02756.
[1]
P. Brus, V. Zatko, M. Galbiati, F. Godel, S. Collin, B. Servet, S. Xavier, R. Aubry, P. Garabedian, M.-B. Martin, B. Dlubak, P. Seneor, O. Bezencenet, Large‐Scale‐Compatible Stabilization of a 2D Semiconductor Platform toward Discrete Components, Advanced Electronic Materials 7 (2021) 2001109. https://doi.org/10.1002/aelm.202001109.
[1]
V. Zatko, S. Dubois, F. Godel, C. Carrétéro, A. Sander, S. Collin, M. Galbiati, J. Peiro, F. Panciera, G. Patriarche, P. Brus, B. Servet, J.-C. Charlier, M.-B. Martin, B. Dlubak, P. Seneor, Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures, ACS Nano 15 (2021) 7279. https://doi.org/10.1021/acsnano.1c00544.
[1]
L.D.N. Mouafo, F. Godel, L. Simon, Y.J. Dappe, W. Baaziz, U.N. Noumbé, E. Lorchat, M.-B. Martin, S. Berciaud, B. Doudin, O. Ersen, B. Dlubak, P. Seneor, J.-F. Dayen, 0D/2D Heterostructures Vertical Single Electron Transistor, Advanced Functional Materials 31 (2021) 2008255. https://doi.org/10.1002/adfm.202008255.
[1]
T.H. Dang, J. Hawecker, E. Rongione, G.B. Flores, D.Q. To, J.C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J.-M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, K. Belashchenko, S. Dhillon, H. Jaffrès, Ultrafast spin-currents and charge conversion at 3d-5d interfaces probed by time-domain terahertz spectroscopy, Applied Physics Reviews 7 (2020) 041409. https://doi.org/10.1063/5.0022369.
[1]
M. Piquemal-Banci, R. Galceran, S.M.-M. Dubois, V. Zatko, M. Galbiati, F. Godel, M.-B. Martin, R.-S. Weatherup, F. Petroff, A. Fert, J.-C. Charlier, J. Robertson, S. Hofmann, B. Dlubak, P. Seneor, Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers, Nat Commun 11 (2020) 5670. https://doi.org/10.1038/s41467-020-19420-6.
[1]
M. Galbiati, V. Zatko, F. Godel, P. Hirschauer, A. Vecchiola, K. Bouzehouane, S. Collin, B. Servet, A. Cantarero, F. Petroff, M.-B. Martin, B. Dlubak, P. Seneor, Very Long Term Stabilization of a 2D Magnet down to the Monolayer for Device Integration, ACS Applied Electronic Materials 2 (2020) 3508. https://doi.org/10.1021/acsaelm.0c00810.
[1]
T.H. Dang, Q. Barbedienne, D.Q. To, E. Rongione, N. Reyren, F. Godel, S. Collin, J.M. George, H. Jaffrès, Anomalous Hall effect in 3d/5d multilayers mediated by interface scattering and nonlocal spin conductivity, Phys. Rev. B 102 (2020) 144405. https://doi.org/10.1103/PhysRevB.102.144405.
[1]
D. Perconte, K. Seurre, V. Humbert, C. Ulysse, A. Sander, J. Trastoy, V. Zatko, F. Godel, P.R. Kidambi, S. Hofmann, X.P. Zhang, D. Bercioux, F.S. Bergeret, B. Dlubak, P. Seneor, J.-E. Villegas, Long-Range Propagation and Interference of d-Wave Superconducting Pairs in Graphene, Phys. Rev. Lett. 125 (2020) 087002. https://doi.org/10.1103/PhysRevLett.125.087002.
[1]
F. Godel, V. Zatko, C. Carrétéro, A. Sander, M. Galbiati, A. Vecchiola, P. Brus, O. Bezencenet, B. Servet, M.-B. Martin, B. Dlubak, P. Seneor, WS2 2D Semiconductor Down to Monolayers by Pulsed-Laser Deposition for Large-Scale Integration in Electronics and Spintronics Circuits, ACS Applied Nano Materials 3 (2020) 7908. https://doi.org/10.1021/acsanm.0c01408.
[1]
H. Naganuma, V. Zatko, M. Galbiati, F. Godel, A. Sander, C. Carrétéro, O. Bezencenet, N. Reyren, M.-B. Martin, B. Dlubak, P. Seneor, A perpendicular graphene/ferromagnet electrode for spintronics, Applied Physics Letters 116 (2020) 173101. https://doi.org/10.1063/1.5143567.
[1]
A. Haykal, J. Fischer, W. Akhtar, J.-Y. Chauleau, D. Sando, A. Finco, F. Godel, Y.A. Birkhölzer, C. Carrétéro, N. Jaouen, M. Bibes, M. Viret, S. Fusil, V. Jacques, V. Garcia, Antiferromagnetic textures in BiFeO3 controlled by strain and electric field, Nat Commun 11 (2020) 1704. https://doi.org/10.1038/s41467-020-15501-8.
[1]
X. Palermo, N. Reyren, S. Mesoraca, A.V. Samokhvalov, S. Collin, F. Godel, A. Sander, K. Bouzehouane, J. Santamaria, V. Cros, A.I. Buzdin, J.-E. Villegas, Tailored Flux Pinning in Superconductor-Ferromagnet Multilayers with Engineered Magnetic Domain Morphology From Stripes to Skyrmions, Phys. Rev. Applied 13 (2020) 014043. https://doi.org/10.1103/PhysRevApplied.13.014043.
[1]
V. Zatko, M. Galbiati, S. Dubois, M. Och, P. Palczynski, C. Mattevi, P. Brus, O. Bezencenet, M.-B. Martin, B. Servet, J.-C. Charlier, F. Godel, A. Vecchiola, K. Bouzehouane, S. Collin, F. Petroff, B. Dlubak, P. Seneor, Band-Structure Spin-Filtering in Vertical Spin Valves Based on Chemical Vapor Deposited WS2, ACS Nano 13 (2019) 14468. https://doi.org/10.1021/acsnano.9b08178.
[1]
M. Galbiati, S. Tatay, S.M.-M. Dubois, F. Godel, R. Galceran, S. Mañas-Valero, M. Piquemal-Banci, A. Vecchiola, J.-C. Charlier, A. Forment-Aliaga, E. Coronado, B. Dlubak, P. Seneor, Path to Overcome Material and Fundamental Obstacles in Spin Valves Based on MoS2 and Other Transition-Metal Dichalcogenides, Phys. Rev. Applied 12 (2019) 044022. https://doi.org/10.1103/PhysRevApplied.12.044022.
[1]
L.-M. Kern, R. Galceran, V. Zatko, M. Galbiati, F. Godel, D. Perconte, F. Bouamrane, E. Gaufrès, A. Loiseau, P. Brus, O. Bezencenet, M.-B. Martin, B. Servet, F. Petroff, B. Dlubak, P. Seneor, Atomic layer deposition of a MgO barrier for a passivated black phosphorus spintronics platform, Applied Physics Letters 114 (2019) 053107. https://doi.org/10.1063/1.5086840.
[1]
L.D.N. Mouafo, F. Godel, G. Melinte, S. Hajjar‐Garreau, H. Majjad, B. Dlubak, O. Ersen, B. Doudin, L. Simon, P. Seneor, J.-F. Dayen, Anisotropic Magneto‐Coulomb Properties of 2D–0D Heterostructure Single Electron Device, Advanced Materials 30 (2018). https://doi.org/10.1002/adma.201802478.
[1]
M. Galbiati, A. Vecchiola, S. Mañas-Valero, J. Canet-Ferrer, R. Galceran, M. Piquemal-Banci, F. Godel, A. Forment-Aliaga, B. Dlubak, P. Seneor, E. Coronado, A Local Study of the Transport Mechanisms in MoS2 Layers for Magnetic Tunnel Junctions, ACS Applied Materials & Interfaces 10 (2018) 30017. https://doi.org/10.1021/acsami.8b08853.
[1]
M. Piquemal-Banci, R. Galceran, F. Godel, S. Caneva, M.-B. Martin, R.-S. Weatherup, P.-R. Kidambi, K. Bouzehouane, S. Xavier, A. Anane, F. Petroff, A. Fert, S. Dubois, J.-C. Charlier, J. Robertson, S. Hofmann, B. Dlubak, P. Seneor, Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitride, ACS Nano 12 (2018) 4712. https://doi.org/10.1021/acsnano.8b01354.
[1]
R. Galceran, E. Gaufres, A. Loiseau, M. Piquemal-Banci, F. Godel, A. Vecchiola, O. Bezencenet, M.-B. Martin, B. Servet, F. Petroff, B. Dlubak, P. Seneor, Stabilizing ultra-thin black phosphorus with in-situ-grown 1 nm-Al2O3 barrier, Applied Physics Letters 111 (2017) 243101. https://doi.org/10.1063/1.5008484.
[1]
M. Piquemal-Banci, R. Galceran, M.-B. Martin, F. Godel, A. Anane, F. Petroff, B. Dlubak, P. Seneor, 2D-MTJs: introducing 2D materials in magnetic tunnel junctions, J. Phys. D: Appl. Phys. 50 (2017) 203002. https://doi.org/10.1088/1361-6463/aa650f.