BOVENTER Isabella-Rahel
Thales Researcher
2898556
Boventer, I.
surface-science-reports
500
date
desc
1618
https://laboratoire-albert-fert.cnrs-thales.fr/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3A%22zotpress-40be595484eca35d23b0d02c8bf0afc1%22%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22CLGMAGZJ%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mallik%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ES.%20Mallik%2C%20B.%20G%26%23xF6%3Bbel%2C%20H.%20Witt%2C%20L.%20Moreno%20Vicente-Arche%2C%20S.%20Varotto%2C%20J.%20Br%26%23xE9%3Bhin%2C%20G.%20M%26%23xE9%3Bnard%2C%20G.%20Sa%26%23xEF%3Bz%2C%20D.%20Tamsaout%2C%20A.F.%20Santander-Syro%2C%20F.%20Fortuna%2C%20F.%20Bertran%2C%20P.%20Le%20F%26%23xE8%3Bvre%2C%20J.%20Rault%2C%20I.%20Boventer%2C%20I.%20Mertig%2C%20A.%20Barth%26%23xE9%3Bl%26%23xE9%3Bmy%2C%20N.%20Bergeal%2C%20A.%20Johansson%2C%20M.%20Bibes%2C%20Electronic%20band%20structure%20of%20superconducting%20KTaO3%20%28111%29%20interfaces%2C%20APL%20Mater.%2011%20%282023%29%20121108.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0169750%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0169750%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Electronic%20band%20structure%20of%20superconducting%20KTaO3%20%28111%29%20interfaces%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Mallik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22G%5Cu00f6bel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Witt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Moreno%20Vicente-Arche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Varotto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Br%5Cu00e9hin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22M%5Cu00e9nard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Sa%5Cu00efz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Tamsaout%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.F.%22%2C%22lastName%22%3A%22Santander-Syro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Fortuna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Bertran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Le%20F%5Cu00e8vre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Rault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Boventer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Mertig%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Barth%5Cu00e9l%5Cu00e9my%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Bergeal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Johansson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bibes%22%7D%5D%2C%22abstractNote%22%3A%22Two-dimensional%20electron%20gases%20%282DEGs%29%20based%20on%20KTaO3%20are%20emerging%20as%20a%20promising%20platform%20for%20spin-orbitronics%20due%20to%20their%20high%20Rashba%20spin%5Cu2013orbit%20coupling%20%28SO%22%2C%22date%22%3A%222023%5C%2F12%5C%2F01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0169750%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222024-01-02T11%3A07%3A03Z%22%7D%7D%2C%7B%22key%22%3A%22E9DFFYM6%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Witt%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EH.%20Witt%2C%20S.%20Mallik%2C%20L.%20Moreno%20Vicente-Arche%2C%20G.%20M%26%23xE9%3Bnard%2C%20G.%20Sa%26%23xEF%3Bz%2C%20D.%20Stornaiuolo%2C%20M.%20D%26%23x2019%3BAntuono%2C%20I.%20Boventer%2C%20N.%20Bergeal%2C%20M.%20Bibes%2C%20Patterning%20of%20Superconducting%20Two-Dimensional%20Electron%20Gases%20based%20on%20AlOx%5C%2FKTaO3%20%28111%29%20Interfaces%2C%20Advanced%20Physics%20Research%202%20%282023%29%202200077.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fapxr.202200077%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fapxr.202200077%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Patterning%20of%20Superconducting%20Two-Dimensional%20Electron%20Gases%20based%20on%20AlOx%5C%2FKTaO3%20%28111%29%20Interfaces%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Witt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Mallik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Moreno%20Vicente-Arche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22M%5Cu00e9nard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Sa%5Cu00efz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Stornaiuolo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22D%27Antuono%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Boventer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Bergeal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bibes%22%7D%5D%2C%22abstractNote%22%3A%22As%20recently%20discovered%2C%20two-dimensional%20electron%20%282DEG%29%20gases%20based%20on%20KTaO3%28111%29%20interfaces%20display%20superconductivity%20at%20low%20temperature.%20The%20authors%20present%20three%20different%20techniques%20for%20patternin...%22%2C%22date%22%3A%222023%5C%2F10%5C%2F01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fapxr.202200077%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-07T14%3A21%3A47Z%22%7D%7D%2C%7B%22key%22%3A%2286JLIXUB%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22El%20Kanj%20et%20al.%22%2C%22parsedDate%22%3A%222023-08%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EA.%20El%20Kanj%2C%20O.%20Gomonay%2C%20I.%20Boventer%2C%20P.%20Bortolotti%2C%20V.%20Cros%2C%20A.%20Anane%2C%20R.%20Lebrun%2C%20Antiferromagnetic%20magnon%20spintronic%20based%20on%20nonreciprocal%20and%20nondegenerated%20ultra-fast%20spin-waves%20in%20the%20canted%20antiferromagnet%20%26%23x3B1%3B-Fe2O3%2C%20Science%20Advances%209%20%282023%29%20eadh1601.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.adh1601%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.adh1601%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Antiferromagnetic%20magnon%20spintronic%20based%20on%20nonreciprocal%20and%20nondegenerated%20ultra-fast%20spin-waves%20in%20the%20canted%20antiferromagnet%20%5Cu03b1-Fe2O3%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22El%20Kanj%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Gomonay%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Boventer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Bortolotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Cros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lebrun%22%7D%5D%2C%22abstractNote%22%3A%22Dipole-exchange%20antiferromagnetic%20spin-waves%20host%20the%20potential%20for%20non-reciprocal%20and%20ultra-fast%20magnonic%20devices.%22%2C%22date%22%3A%222023-08%22%2C%22language%22%3A%22EN%22%2C%22DOI%22%3A%2210.1126%5C%2Fsciadv.adh1601%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A14%3A01Z%22%7D%7D%2C%7B%22key%22%3A%22JNUWY7F3%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Boventer%20et%20al.%22%2C%22parsedDate%22%3A%222023-01-30%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EI.%20Boventer%2C%20H.T.%20Simensen%2C%20B.%20Brekke%2C%20M.%20Weides%2C%20A.%20Anane%2C%20M.%20Kl%26%23xE4%3Bui%2C%20A.%20Brataas%2C%20R.%20Lebrun%2C%20Antiferromagnetic%20Cavity%20Magnon%20Polaritons%20in%20Collinear%20and%20Canted%20Phases%20of%20Hematite%2C%20Phys.%20Rev.%20Appl.%2019%20%282023%29%20014071.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.19.014071%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.19.014071%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Antiferromagnetic%20Cavity%20Magnon%20Polaritons%20in%20Collinear%20and%20Canted%20Phases%20of%20Hematite%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Boventer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%20T.%22%2C%22lastName%22%3A%22Simensen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Brekke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Weides%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Kl%5Cu00e4ui%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Brataas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lebrun%22%7D%5D%2C%22abstractNote%22%3A%22Cavity%20spintronics%20explores%20light-matter%20interactions%20at%20the%20interface%20between%20spintronic%20and%20quantum%20phenomena.%20Until%20now%2C%20studies%20have%20focused%20on%20the%20hybridization%20between%20magnons%20in%20ferromagnets%20and%20cavity%20photons.%20Here%2C%20we%20realize%20antiferromagnetic%20cavity%20magnon%20polaritons.%20Hybridization%20arises%20from%20the%20interaction%20of%20the%20collective%20spin%20motion%20in%20single%20hematite%20crystals%20%28%5C%5Censuremath%7B%5C%5Calpha%7D-%24%7B%5C%5Cmathrm%7BFe%7D%7D_%7B2%7D%7B%5C%5Cmathrm%7BO%7D%7D_%7B3%7D%24%29%20and%20the%20microwave%20field%20of%20integrated%20cavities%20operating%20between%2018%20and%2045%20GHz.%20We%20show%20theoretically%20and%20experimentally%20that%20the%20photon-magnon%20coupling%20in%20the%20collinear%20phase%20is%20mediated%20by%20the%20dynamic%20N%5C%5C%27eel%20vector%20and%20the%20weak%20magnetic%20moment%20in%20the%20canted%20phase%20by%20measuring%20across%20the%20Morin%20transition.%20We%20show%20that%20the%20coupling%20strength%2C%20%24%5C%5Cstackrel%7B~%7D%7Bg%7D%24%2C%20scales%20with%20the%20anisotropy%20field%20in%20the%20collinear%20phase%20and%20with%20the%20Dzyaloshinskii-Moriya%20field%20in%20the%20canted%20phase.%20We%20reach%20the%20strong-coupling%20regime%20in%20both%20canted%20%28cooperativity%20C%20%26gt%3B%2070%20for%20selected%20modes%20at%20300%20K%29%20and%20noncollinear%20phases%20%28C%20%26gt%3B%204%20at%20150%20K%29%2C%20and%20thus%2C%20towards%20coherent%20information-exchange-harnessing%20antiferromagnetic%20cavity%20magnon%20polaritons.%20These%20results%20provide%20evidence%20for%20a%20generic%20strategy%20to%20achieve%20cavity%20magnon%20polaritons%20in%20antiferromagnets%20for%20different%20symmetries%2C%20opening%20the%20field%20of%20cavity%20spintronics%20to%20antiferromagnetic%20materials.%22%2C%22date%22%3A%222023%5C%2F01%5C%2F30%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.19.014071%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222024-02-12T12%3A16%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22E6IULWTP%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gou%5Cu00e9r%5Cu00e9%20et%20al.%22%2C%22parsedDate%22%3A%222022-11-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ED.%20Gou%26%23xE9%3Br%26%23xE9%3B%2C%20H.%20Merbouche%2C%20A.%20El%20Kanj%2C%20F.%20Kohl%2C%20C.%20Carr%26%23xE9%3Bt%26%23xE9%3Bro%2C%20I.%20Boventer%2C%20R.%20Lebrun%2C%20P.%20Bortolotti%2C%20V.%20Cros%2C%20J.%20Ben%20Youssef%2C%20A.%20Anane%2C%20Temperature-independent%20ferromagnetic%20resonance%20shift%20in%20Bi-doped%20YIG%20garnets%20through%20magnetic%20anisotropy%20tuning%2C%20Phys.%20Rev.%20Mater.%206%20%282022%29%20114402.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevMaterials.6.114402%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevMaterials.6.114402%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Temperature-independent%20ferromagnetic%20resonance%20shift%20in%20Bi-doped%20YIG%20garnets%20through%20magnetic%20anisotropy%20tuning%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Gou%5Cu00e9r%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Merbouche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22El%20Kanj%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Kohl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Carr%5Cu00e9t%5Cu00e9ro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Boventer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lebrun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Bortolotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Cros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Ben%20Youssef%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%5D%2C%22abstractNote%22%3A%22Thin%20garnet%20films%20are%20becoming%20central%20for%20magnon-spintronics%20and%20spin-orbitronics%20devices%20as%20they%20show%20versatile%20magnetic%20properties%20together%20with%20low%20magnetic%20losses.%20These%20fields%20would%20benefit%20from%20materials%20in%20which%20heat%20does%20not%20affect%20the%20magnetization%20dynamics%2C%20an%20effect%20known%20as%20the%20nonlinear%20thermal%20frequency%20shift.%20In%20this%20study%2C%20low-damping%20Bi%20substituted%20iron%20garnet%20%28Bi%3AYIG%29%20ultrathin%20films%20have%20been%20grown%20using%20pulsed%20laser%20deposition.%20Through%20a%20fine-tuning%20of%20the%20growth%20parameters%2C%20the%20precise%20control%20of%20the%20perpendicular%20magnetic%20anisotropy%20allows%20to%20achieve%20a%20full%20compensation%20of%20the%20dipolar%20magnetic%20anisotropy.%20Strikingly%2C%20once%20the%20growth%20conditions%20are%20optimized%2C%20varying%20the%20growth%20temperature%20from%20%24%7B405%7D%5E%7B%5C%5Censuremath%7B%5C%5Ccirc%7D%7D%5C%5Cmathrm%7BC%7D%24%20to%20%24%7B475%7D%5E%7B%5C%5Censuremath%7B%5C%5Ccirc%7D%7D%5C%5Cmathrm%7BC%7D%24%20as%20the%20only%20tuning%20parameter%20induces%20the%20easy%20axis%20to%20go%20from%20out%20of%20plane%20to%20in%20plane.%20For%20films%20that%20are%20close%20to%20the%20dipolar%20compensation%2C%20ferromagnetic%20resonance%20measurements%20yield%20an%20effective%20magnetization%20%24%7B%5C%5Censuremath%7B%5C%5Cmu%7D%7D_%7B0%7D%7BM%7D_%7B%5C%5Cmathrm%7Beff%7D%7D%5C%5Cphantom%7B%5C%5Crule%7B0.28em%7D%7B0ex%7D%7D%28%5C%5Cmathrm%7BT%7D%29%24%20that%20has%20almost%20no%20temperature%20dependence%20over%20a%20large%20temperature%20range%20%28260%20to%20400%20K%29%20resulting%20in%20an%20anisotropy%20temperature%20exponent%20of%202.%20These%20findings%20put%20the%20Bi%3AYIG%20system%20among%20the%20very%20few%20materials%20in%20which%20the%20temperature%20dependence%20of%20the%20magnetic%20anisotropy%20varies%20at%20the%20same%20rate%20as%20the%20saturation%20magnetization.%20This%20interesting%20behavior%20is%20ascribed%20phenomenologically%20to%20the%20sizable%20orbital%20moment%20of%20%24%7B%5C%5Cmathrm%7BBi%7D%7D%5E%7B3%2B%7D%24.%22%2C%22date%22%3A%222022%5C%2F11%5C%2F14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevMaterials.6.114402%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222024-02-12T12%3A15%3A13Z%22%7D%7D%2C%7B%22key%22%3A%22NUVF79M8%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chumak%20et%20al.%22%2C%22parsedDate%22%3A%222022-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EA.V.%20Chumak%2C%20P.%20Kabos%2C%20M.%20Wu%2C%20C.%20Abert%2C%20C.%20Adelmann%2C%20A.O.%20Adeyeye%2C%20J.%20%26%23xC5%3Bkerman%2C%20F.G.%20Aliev%2C%20A.%20Anane%2C%20A.%20Awad%2C%20C.H.%20Back%2C%20A.%20Barman%2C%20G.E.W.%20Bauer%2C%20M.%20Becherer%2C%20E.N.%20Beginin%2C%20V.A.S.V.%20Bittencourt%2C%20Y.M.%20Blanter%2C%20P.%20Bortolotti%2C%20I.%20Boventer%2C%20D.A.%20Bozhko%2C%20S.A.%20Bunyaev%2C%20J.J.%20Carmiggelt%2C%20R.R.%20Cheenikundil%2C%20F.%20Ciubotaru%2C%20S.%20Cotofana%2C%20G.%20Csaba%2C%20O.V.%20Dobrovolskiy%2C%20C.%20Dubs%2C%20M.%20Elyasi%2C%20K.G.%20Fripp%2C%20H.%20Fulara%2C%20I.A.%20Golovchanskiy%2C%20C.%20Gonzalez-Ballestero%2C%20P.%20Graczyk%2C%20D.%20Grundler%2C%20P.%20Gruszecki%2C%20G.%20Gubbiotti%2C%20K.%20Guslienko%2C%20A.%20Haldar%2C%20S.%20Hamdioui%2C%20R.%20Hertel%2C%20B.%20Hillebrands%2C%20T.%20Hioki%2C%20A.%20Houshang%2C%20C.-M.%20Hu%2C%20H.%20Huebl%2C%20M.%20Huth%2C%20E.%20Iacocca%2C%20M.B.%20Jungfleisch%2C%20G.N.%20Kakazei%2C%20A.%20Khitun%2C%20R.%20Khymyn%2C%20T.%20Kikkawa%2C%20M.%20Kl%26%23xE4%3Bui%2C%20O.%20Klein%2C%20J.W.%20K%26%23x142%3Bos%2C%20S.%20Knauer%2C%20S.%20Koraltan%2C%20M.%20Kostylev%2C%20M.%20Krawczyk%2C%20I.N.%20Krivorotov%2C%20V.V.%20Kruglyak%2C%20D.%20Lachance-Quirion%2C%20S.%20Ladak%2C%20R.%20Lebrun%2C%20Y.%20Li%2C%20M.%20Lindner%2C%20R.%20Mac%26%23xEA%3Bdo%2C%20S.%20Mayr%2C%20G.A.%20Melkov%2C%20S.%20Mieszczak%2C%20Y.%20Nakamura%2C%20H.T.%20Nembach%2C%20A.A.%20Nikitin%2C%20S.A.%20Nikitov%2C%20V.%20Novosad%2C%20J.A.%20Ot%26%23xE1%3Blora%2C%20Y.%20Otani%2C%20A.%20Papp%2C%20B.%20Pigeau%2C%20P.%20Pirro%2C%20W.%20Porod%2C%20F.%20Porrati%2C%20H.%20Qin%2C%20B.%20Rana%2C%20T.%20Reimann%2C%20F.%20Riente%2C%20O.%20Romero-Isart%2C%20A.%20Ross%2C%20A.V.%20Sadovnikov%2C%20A.R.%20Safin%2C%20E.%20Saitoh%2C%20G.%20Schmidt%2C%20H.%20Schultheiss%2C%20K.%20Schultheiss%2C%20A.A.%20Serga%2C%20S.%20Sharma%2C%20J.M.%20Shaw%2C%20D.%20Suess%2C%20O.%20Surzhenko%2C%20K.%20Szulc%2C%20T.%20Taniguchi%2C%20M.%20Urb%26%23xE1%3Bnek%2C%20K.%20Usami%2C%20A.B.%20Ustinov%2C%20T.%20van%20der%20Sar%2C%20S.%20van%20Dijken%2C%20V.I.%20Vasyuchka%2C%20R.%20Verba%2C%20S.V.%20Kusminskiy%2C%20Q.%20Wang%2C%20M.%20Weides%2C%20M.%20Weiler%2C%20S.%20Wintz%2C%20S.P.%20Wolski%2C%20X.%20Zhang%2C%20Advances%20in%20Magnetics%20Roadmap%20on%20Spin-Wave%20Computing%2C%20IEEE%20Transactions%20on%20Magnetics%2058%20%282022%29%201%26%23x2013%3B72.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMAG.2022.3149664%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMAG.2022.3149664%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Advances%20in%20Magnetics%20Roadmap%20on%20Spin-Wave%20Computing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20V.%22%2C%22lastName%22%3A%22Chumak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Kabos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Abert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Adelmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20O.%22%2C%22lastName%22%3A%22Adeyeye%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22%5Cu00c5kerman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20G.%22%2C%22lastName%22%3A%22Aliev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Awad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20H.%22%2C%22lastName%22%3A%22Back%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Barman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%20E.%20W.%22%2C%22lastName%22%3A%22Bauer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Becherer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%20N.%22%2C%22lastName%22%3A%22Beginin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%20A.%20S.%20V.%22%2C%22lastName%22%3A%22Bittencourt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%20M.%22%2C%22lastName%22%3A%22Blanter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Bortolotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Boventer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20A.%22%2C%22lastName%22%3A%22Bozhko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20A.%22%2C%22lastName%22%3A%22Bunyaev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20J.%22%2C%22lastName%22%3A%22Carmiggelt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%20R.%22%2C%22lastName%22%3A%22Cheenikundil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Ciubotaru%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Cotofana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Csaba%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%20V.%22%2C%22lastName%22%3A%22Dobrovolskiy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Dubs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Elyasi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20G.%22%2C%22lastName%22%3A%22Fripp%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Fulara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%20A.%22%2C%22lastName%22%3A%22Golovchanskiy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Gonzalez-Ballestero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Graczyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Grundler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Gruszecki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Gubbiotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Guslienko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Haldar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Hamdioui%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Hertel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Hillebrands%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Hioki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Houshang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.-M.%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Huebl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Huth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Iacocca%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20B.%22%2C%22lastName%22%3A%22Jungfleisch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%20N.%22%2C%22lastName%22%3A%22Kakazei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Khitun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Khymyn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Kikkawa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Kl%5Cu00e4ui%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Klein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20W.%22%2C%22lastName%22%3A%22K%5Cu0142os%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Knauer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Koraltan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Kostylev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Krawczyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%20N.%22%2C%22lastName%22%3A%22Krivorotov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%20V.%22%2C%22lastName%22%3A%22Kruglyak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Lachance-Quirion%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Ladak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lebrun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Lindner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Mac%5Cu00eado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Mayr%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%20A.%22%2C%22lastName%22%3A%22Melkov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Mieszczak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Nakamura%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%20T.%22%2C%22lastName%22%3A%22Nembach%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20A.%22%2C%22lastName%22%3A%22Nikitin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20A.%22%2C%22lastName%22%3A%22Nikitov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Novosad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20A.%22%2C%22lastName%22%3A%22Ot%5Cu00e1lora%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Otani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Papp%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Pigeau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Pirro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%22%2C%22lastName%22%3A%22Porod%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Porrati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Qin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Rana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Reimann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Riente%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Romero-Isart%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Ross%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20V.%22%2C%22lastName%22%3A%22Sadovnikov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20R.%22%2C%22lastName%22%3A%22Safin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Saitoh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Schmidt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Schultheiss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Schultheiss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20A.%22%2C%22lastName%22%3A%22Serga%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Sharma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22Shaw%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Suess%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Surzhenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Szulc%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Taniguchi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Urb%5Cu00e1nek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Usami%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20B.%22%2C%22lastName%22%3A%22Ustinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22van%20der%20Sar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22van%20Dijken%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%20I.%22%2C%22lastName%22%3A%22Vasyuchka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Verba%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20V.%22%2C%22lastName%22%3A%22Kusminskiy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Q.%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Weides%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Weiler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Wintz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20P.%22%2C%22lastName%22%3A%22Wolski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%22%2C%22lastName%22%3A%22Zhang%22%7D%5D%2C%22abstractNote%22%3A%22Magnonics%20addresses%20the%20physical%20properties%20of%20spin%20waves%20and%20utilizes%20them%20for%20data%20processing.%20Scalability%20down%20to%20atomic%20dimensions%2C%20operation%20in%20the%20GHz-to-THz%20frequency%20range%2C%20utilization%20of%20nonlinear%20and%20nonreciprocal%20phenomena%2C%20and%20compatibility%20with%20CMOS%20are%20just%20a%20few%20of%20many%20advantages%20offered%20by%20magnons.%20Although%20magnonics%20is%20still%20primarily%20positioned%20in%20the%20academic%20domain%2C%20the%20scientific%20and%20technological%20challenges%20of%20the%20field%20are%20being%20extensively%20investigated%2C%20and%20many%20proof-of-concept%20prototypes%20have%20already%20been%20realized%20in%20laboratories.%20This%20roadmap%20is%20a%20product%20of%20the%20collective%20work%20of%20many%20authors%2C%20which%20covers%20versatile%20spin-wave%20computing%20approaches%2C%20conceptual%20building%20blocks%2C%20and%20underlying%20physical%20phenomena.%20In%20particular%2C%20the%20roadmap%20discusses%20the%20computation%20operations%20with%20the%20Boolean%20digital%20data%2C%20unconventional%20approaches%2C%20such%20as%20neuromorphic%20computing%2C%20and%20the%20progress%20toward%20magnon-based%20quantum%20computing.%20This%20article%20is%20organized%20as%20a%20collection%20of%20sub-sections%20grouped%20into%20seven%20large%20thematic%20sections.%20Each%20sub-section%20is%20prepared%20by%20one%20or%20a%20group%20of%20authors%20and%20concludes%20with%20a%20brief%20description%20of%20current%20challenges%20and%20the%20outlook%20of%20further%20development%20for%20each%20research%20direction.%22%2C%22date%22%3A%222022-06%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FTMAG.2022.3149664%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T14%3A07%3A08Z%22%7D%7D%2C%7B%22key%22%3A%22WR4JJGYW%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Merbouche%20et%20al.%22%2C%22parsedDate%22%3A%222021-05-20%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EH.%20Merbouche%2C%20I.%20Boventer%2C%20V.%20Haspot%2C%20S.%20Fusil%2C%20V.%20Garcia%2C%20D.%20Gou%26%23xE9%3Br%26%23xE9%3B%2C%20C.%20Carr%26%23xE9%3Bt%26%23xE9%3Bro%2C%20A.%20Vecchiola%2C%20R.%20Lebrun%2C%20P.%20Bortolotti%2C%20L.%20Vila%2C%20M.%20Bibes%2C%20A.%20Barth%26%23xE9%3Bl%26%23xE9%3Bmy%2C%20A.%20Anane%2C%20Voltage-Controlled%20Reconfigurable%20Magnonic%20Crystal%20at%20the%20Sub-micrometer%20Scale%2C%20ACS%20Nano%2015%20%282021%29%209775.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.1c00499%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.1c00499%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Voltage-Controlled%20Reconfigurable%20Magnonic%20Crystal%20at%20the%20Sub-micrometer%20Scale%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Merbouche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Boventer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Haspot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Fusil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Garcia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Gou%5Cu00e9r%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Carr%5Cu00e9t%5Cu00e9ro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Vecchiola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lebrun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Bortolotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Vila%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Bibes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Barth%5Cu00e9l%5Cu00e9my%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%5D%2C%22abstractNote%22%3A%22Multiferroics%20offer%20an%20elegant%20means%20to%20implement%20voltage%20control%20and%20on%20the%20fly%20reconfigurability%20in%20microscopic%2C%20nanoscaled%20systems%20based%20on%20ferromagnetic%20materials.%20These%20properties%20are%20particularly%20interesting%20for%20the%20field%20of%20magnonics%2C%20where%20spin%20waves%20are%20used%20to%20perform%20advanced%20logical%20or%20analogue%20functions.%20Recently%2C%20the%20emergence%20of%20nanomagnonics%20is%20expected%20to%20eventually%20lead%20to%20the%20large-scale%20integration%20of%20magnonic%20devices.%20However%2C%20a%20compact%20voltage-controlled%2C%20on%20demand%20reconfigurable%20magnonic%20system%20has%20yet%20to%20be%20shown.%20Here%2C%20we%20introduce%20the%20combination%20of%20multiferroics%20with%20ferromagnets%20in%20a%20fully%20epitaxial%20heterostructure%20to%20achieve%20such%20voltage-controlled%20and%20reconfigurable%20magnonic%20systems.%20Imprinting%20a%20remnant%20electrical%20polarization%20in%20thin%20multiferroic%20BiFeO3%20with%20a%20periodicity%20of%20500%20nm%20yields%20a%20modulation%20of%20the%20effective%20magnetic%20field%20in%20the%20micrometer-scale%2C%20ferromagnetic%20La2%5C%2F3Sr1%5C%2F3MnO3%20magnonic%20waveguide.%20We%20evidence%20the%20magnetoelectric%20coupling%20by%20characterizing%20the%20spin%20wave%20propagation%20spectrum%20in%20this%20artificial%2C%20voltage%20induced%2C%20magnonic%20crystal%20and%20demonstrate%20the%20occurrence%20of%20a%20robust%20magnonic%20band%20gap%20with%20%3E20%20dB%20rejection.%22%2C%22date%22%3A%22May%2020%2C%202021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsnano.1c00499%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A56%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22WFSJE45M%22%2C%22library%22%3A%7B%22id%22%3A2898556%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Boventer%20et%20al.%22%2C%22parsedDate%22%3A%222021-05-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EI.%20Boventer%2C%20H.T.%20Simensen%2C%20A.%20Anane%2C%20M.%20Kl%26%23xE4%3Bui%2C%20A.%20Brataas%2C%20R.%20Lebrun%2C%20Room-Temperature%20Antiferromagnetic%20Resonance%20and%20Inverse%20Spin-Hall%20Voltage%20in%20Canted%20Antiferromagnets%2C%20Phys.%20Rev.%20Lett.%20126%20%282021%29%20187201.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.126.187201%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevLett.126.187201%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Room-Temperature%20Antiferromagnetic%20Resonance%20and%20Inverse%20Spin-Hall%20Voltage%20in%20Canted%20Antiferromagnets%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Boventer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%20T.%22%2C%22lastName%22%3A%22Simensen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Anane%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Kl%5Cu00e4ui%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Brataas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Lebrun%22%7D%5D%2C%22abstractNote%22%3A%22We%20study%20theoretically%20and%20experimentally%20the%20spin%20pumping%20signals%20induced%20by%20the%20resonance%20of%20canted%20antiferromagnets%20with%20Dzyaloshinskii-Moriya%20interaction%20and%20demonstrate%20that%20they%20can%20generate%20easily%20observable%20inverse%20spin-Hall%20voltages.%20Using%20a%20bilayer%20of%20hematite%5C%2Fheavy%20metal%20as%20a%20model%20system%2C%20we%20measure%20at%20room%20temperature%20the%20antiferromagnetic%20resonance%20and%20an%20associated%20inverse%20spin-Hall%20voltage%2C%20as%20large%20as%20in%20collinear%20antiferromagnets.%20As%20expected%20for%20coherent%20spin%20pumping%2C%20we%20observe%20that%20the%20sign%20of%20the%20inverse%20spin-Hall%20voltage%20provides%20direct%20information%20about%20the%20mode%20handedness%20as%20deduced%20by%20comparing%20hematite%2C%20chromium%20oxide%20and%20the%20ferrimagnet%20yttrium-iron%20garnet.%20Our%20results%20open%20new%20means%20to%20generate%20and%20detect%20spin%20currents%20at%20terahertz%20frequencies%20by%20functionalizing%20antiferromagnets%20with%20low%20damping%20and%20canted%20moments.%22%2C%22date%22%3A%222021%5C%2F05%5C%2F06%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevLett.126.187201%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DVESD6TC%22%5D%2C%22dateModified%22%3A%222023-11-27T13%3A51%3A51Z%22%7D%7D%5D%7D
[1]
S. Mallik, B. Göbel, H. Witt, L. Moreno Vicente-Arche, S. Varotto, J. Bréhin, G. Ménard, G. Saïz, D. Tamsaout, A.F. Santander-Syro, F. Fortuna, F. Bertran, P. Le Fèvre, J. Rault, I. Boventer, I. Mertig, A. Barthélémy, N. Bergeal, A. Johansson, M. Bibes, Electronic band structure of superconducting KTaO3 (111) interfaces, APL Mater. 11 (2023) 121108. https://doi.org/10.1063/5.0169750.
[1]
H. Witt, S. Mallik, L. Moreno Vicente-Arche, G. Ménard, G. Saïz, D. Stornaiuolo, M. D’Antuono, I. Boventer, N. Bergeal, M. Bibes, Patterning of Superconducting Two-Dimensional Electron Gases based on AlOx/KTaO3 (111) Interfaces, Advanced Physics Research 2 (2023) 2200077. https://doi.org/10.1002/apxr.202200077.
[1]
A. El Kanj, O. Gomonay, I. Boventer, P. Bortolotti, V. Cros, A. Anane, R. Lebrun, Antiferromagnetic magnon spintronic based on nonreciprocal and nondegenerated ultra-fast spin-waves in the canted antiferromagnet α-Fe2O3, Science Advances 9 (2023) eadh1601. https://doi.org/10.1126/sciadv.adh1601.
[1]
I. Boventer, H.T. Simensen, B. Brekke, M. Weides, A. Anane, M. Kläui, A. Brataas, R. Lebrun, Antiferromagnetic Cavity Magnon Polaritons in Collinear and Canted Phases of Hematite, Phys. Rev. Appl. 19 (2023) 014071. https://doi.org/10.1103/PhysRevApplied.19.014071.
[1]
D. Gouéré, H. Merbouche, A. El Kanj, F. Kohl, C. Carrétéro, I. Boventer, R. Lebrun, P. Bortolotti, V. Cros, J. Ben Youssef, A. Anane, Temperature-independent ferromagnetic resonance shift in Bi-doped YIG garnets through magnetic anisotropy tuning, Phys. Rev. Mater. 6 (2022) 114402. https://doi.org/10.1103/PhysRevMaterials.6.114402.
[1]
A.V. Chumak, P. Kabos, M. Wu, C. Abert, C. Adelmann, A.O. Adeyeye, J. Åkerman, F.G. Aliev, A. Anane, A. Awad, C.H. Back, A. Barman, G.E.W. Bauer, M. Becherer, E.N. Beginin, V.A.S.V. Bittencourt, Y.M. Blanter, P. Bortolotti, I. Boventer, D.A. Bozhko, S.A. Bunyaev, J.J. Carmiggelt, R.R. Cheenikundil, F. Ciubotaru, S. Cotofana, G. Csaba, O.V. Dobrovolskiy, C. Dubs, M. Elyasi, K.G. Fripp, H. Fulara, I.A. Golovchanskiy, C. Gonzalez-Ballestero, P. Graczyk, D. Grundler, P. Gruszecki, G. Gubbiotti, K. Guslienko, A. Haldar, S. Hamdioui, R. Hertel, B. Hillebrands, T. Hioki, A. Houshang, C.-M. Hu, H. Huebl, M. Huth, E. Iacocca, M.B. Jungfleisch, G.N. Kakazei, A. Khitun, R. Khymyn, T. Kikkawa, M. Kläui, O. Klein, J.W. Kłos, S. Knauer, S. Koraltan, M. Kostylev, M. Krawczyk, I.N. Krivorotov, V.V. Kruglyak, D. Lachance-Quirion, S. Ladak, R. Lebrun, Y. Li, M. Lindner, R. Macêdo, S. Mayr, G.A. Melkov, S. Mieszczak, Y. Nakamura, H.T. Nembach, A.A. Nikitin, S.A. Nikitov, V. Novosad, J.A. Otálora, Y. Otani, A. Papp, B. Pigeau, P. Pirro, W. Porod, F. Porrati, H. Qin, B. Rana, T. Reimann, F. Riente, O. Romero-Isart, A. Ross, A.V. Sadovnikov, A.R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K. Schultheiss, A.A. Serga, S. Sharma, J.M. Shaw, D. Suess, O. Surzhenko, K. Szulc, T. Taniguchi, M. Urbánek, K. Usami, A.B. Ustinov, T. van der Sar, S. van Dijken, V.I. Vasyuchka, R. Verba, S.V. Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S.P. Wolski, X. Zhang, Advances in Magnetics Roadmap on Spin-Wave Computing, IEEE Transactions on Magnetics 58 (2022) 1–72. https://doi.org/10.1109/TMAG.2022.3149664.
[1]
H. Merbouche, I. Boventer, V. Haspot, S. Fusil, V. Garcia, D. Gouéré, C. Carrétéro, A. Vecchiola, R. Lebrun, P. Bortolotti, L. Vila, M. Bibes, A. Barthélémy, A. Anane, Voltage-Controlled Reconfigurable Magnonic Crystal at the Sub-micrometer Scale, ACS Nano 15 (2021) 9775. https://doi.org/10.1021/acsnano.1c00499.
[1]
I. Boventer, H.T. Simensen, A. Anane, M. Kläui, A. Brataas, R. Lebrun, Room-Temperature Antiferromagnetic Resonance and Inverse Spin-Hall Voltage in Canted Antiferromagnets, Phys. Rev. Lett. 126 (2021) 187201. https://doi.org/10.1103/PhysRevLett.126.187201.